The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function V and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method.
This paper is concerned with synchronization of two coupled Hind-marsh-Rose (HR) neurons. Two synchronization criteria are derived by using nonlinear feedback control and linear feedback control, respectively. A synchronization criterion for FitzHugh-Nagumo (FHN) neurons is derived as the application of control method of this paper. Compared with some existing synchronization results for chaotic systems, the contribution of this paper is that feedback gains are only dependent on system parameters, rather than dependent on the norm bounds of state variables of uncontrolled and controlled HR neurons. The effectiveness of our results are demonstrated by two simulation examples.