This resource is a set of 14 vector spaces for single words and Verbal Multiword Expressions (VMWEs) in different languages (German, Greek, Basque, French, Irish, Hebrew, Hindi, Italian, Polish, Brazilian Portuguese, Romanian, Swedish, Turkish, Chinese).
They were trained with the Word2Vec algorithm, in its skip-gram version, on PARSEME raw corpora automatically annotated for morpho-syntax (http://hdl.handle.net/11234/1-3367).
These corpora were annotated by Seen2Seen, a rule-based VMWE identifier, one of the leading tools of the PARSEME shared task version 1.2.
VMWE tokens were merged into single tokens.
The format of the vector space files is that of the original Word2Vec implementation by Mikolov et al. (2013), i.e. a binary format.
For compression, bzip2 was used.
This package comprises eight models of Czech word embeddings trained by applying word2vec (Mikolov et al. 2013) to the currently most extensive corpus of Czech, namely SYN v9 (Křen et al. 2022). The minimum frequency threshold for including a word in the model was 10 occurrences in the corpus. The original lemmatisation and tagging included in the corpus were used for disambiguation. In the case of word embeddings of word forms, units comprise word forms and their tag from a positional tagset (cf. https://wiki.korpus.cz/doku.php/en:pojmy:tag) separated by '>', e.g., kočka>NNFS1-----A----.
The published package provides models trained on both tokens and lemmas. In addition, the models combine training algorithms (CBOW and Skipgram) and dimensions of the resulting vectors (100 or 500), while the training window and negative sampling remained the same during the training. The package also includes files with frequencies of word forms (vocab-frequencies.forms) and lemmas (vocab-frequencies.lemmas).