The SynSemClass 3.5 synonym verb lexicon investigates semantic ‘equivalence’ of verb senses and their valency behavior in parallel Czech-English and German-English language resources, i.e., relates verb meanings with respect to contextually-based verb synonymy.
The Czech lexicon entries are linked to PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F), Vallex (http://hdl.handle.net/11234/1-3524), and CzEngVallex (http://hdl.handle.net/11234/1-1512).
The English lexicon entries are linked to EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2), CzEngVallex (http://hdl.handle.net/11234/1-1512), FrameNet (https://framenet.icsi.berkeley.edu/fndrupal/), VerbNet (https://uvi.colorado.edu/ and http://verbs.colorado.edu/verbnet/index.html), PropBank (http://propbank.github.io/), Ontonotes (http://clear.colorado.edu/compsem/index.php?page=lexicalresources&sub=ontonotes), and English Wordnet (https://wordnet.princeton.edu/).
The German lexicon entries are linked to Woxikon (https://synonyme.woxikon.de), E-VALBU (https://grammis.ids-mannheim.de/verbvalenz), and GUP (http://alanakbik.github.io/multilingual.html; https://github.com/UniversalDependencies/UD_German-GSD).
The SynSemClass synonym verb lexicon version 4.0 investigates, with respect to contextually-based verb synonymy, semantic ‘equivalence’ of Czech, English, and German verb senses and their valency behavior in parallel Czech-English and German-English language resources. SynSemClass 4.0 is a multilingual event-type ontology based on classes of synonymous verb senses, complemented with semantic roles and links to existing semantic lexicons. The version 4.0 is not only enriched by an additional number of classes but in the context of content hierarchy, some classes have been merged. Compared to the older versions of the lexicon, the novelty is the definitions of classes and the definitions of roles.
Czech lexicon entries are linked to PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F), Vallex (http://hdl.handle.net/11234/1-3524), and CzEngVallex (http://hdl.handle.net/11234/1-1512). The English lexicon entries are linked to EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2), CzEngVallex (http://hdl.handle.net/11234/1-1512), FrameNet (https://framenet.icsi.berkeley.edu/fndrupal/), VerbNet (https://uvi.colorado.edu/ and http://verbs.colorado.edu/verbnet/index.html), PropBank (http://propbank.github.io/), Ontonotes (http://clear.colorado.edu/compsem/index.php?page=lexicalresources&sub=ontonotes), and English Wordnet (https://wordnet.princeton.edu/). The German lexicon entries are linked to Woxikon (https://synonyme.woxikon.de), E-VALBU (https://grammis.ids-mannheim.de/verbvalenz), and GUP (http://alanakbik.github.io/multilingual.html; https://github.com/UniversalDependencies/UD_German-GSD).
The SynSemClass synonym verb lexicon version 5.0 is a multilingual resource that enriches previous editions of this event-type ontology with a new language, Spanish. The existing languages, English, Czech and German, are further substantially extended by a larger number of classes. SSC 5.0 data also contain lists (in a separate removed_cms.zip file) with originally (pre-)proposed but later rejected class members. All languages are organized into classes and have links to other lexical sources. In addition to the existing links, links to Spanish sources have been added.
The Spanish entries are linked to
ADESSE (http://adesse.uvigo.es/),
Spanish SenSem (http://grial.edu.es/sensem/lexico?idioma=en),
Spanish WordNet (https://adimen.si.ehu.es/cgi-bin/wei/public/wei.consult.perl),
AnCora (https://clic.ub.edu/corpus/en/ancoraverb_es), and
Spanish FrameNet (http://sfn.spanishfn.org/SFNreports.php).
The English entries are linked to
EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2),
CzEngVallex (http://hdl.handle.net/11234/1-1512),
FrameNet (https://framenet.icsi.berkeley.edu/)
VerbNet (https://uvi.colorado.edu/ and http://verbs.colorado.edu/verbnet/index.html),
PropBank (http://propbank.github.io/),
Ontonotes (http://clear.colorado.edu/compsem/index.php?page=lexicalresources&sub=ontonotes), and
English Wordnet (https://wordnet.princeton.edu/).
Czech entries are linked to
PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F),
Vallex (http://hdl.handle.net/11234/1-3524), and
CzEngVallex (http://hdl.handle.net/11234/1-1512).
The German entries are linked to
Woxikon (https://synonyme.woxikon.de),
E-VALBU (https://grammis.ids-mannheim.de/verbvalenz), and
GUP (http://alanakbik.github.io/multilingual.html and https://github.com/UniversalDependencies/UD_German-GSD).
The SynSemClass synonym verb lexicon is a result of a project investigating semantic ‘equivalence’ of verb senses and their valency behavior in parallel Czech-English language resources, i.e., relating verb meanings with respect to contextually-based verb synonymy. The lexicon entries are linked to PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F), EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2), CzEngVallex (http://hdl.handle.net/11234/1-1512), FrameNet (https://framenet.icsi.berkeley.edu/fndrupal/), VerbNet (https://uvi.colorado.edu/ and http://verbs.colorado.edu/verbnet/index.html), PropBank (http://propbank.github.io/), Ontonotes (http://clear.colorado.edu/compsem/index.php?page=lexicalresources&sub=ontonotes), and English Wordnet (https://wordnet.princeton.edu/).
CzEng is a sentence-parallel Czech-English corpus compiled at the Institute of Formal and Applied Linguistics (ÚFAL). While the full CzEng 2.0 is freely available for non-commercial research purposes from the project website (https://ufal.mff.cuni.cz/czeng), this release contains only the original monolingual parts of news text (csmono 53M and enmono 79M sentences) with automatic (synthetic) translations by CUBBITT.
See the attached README for additional details such as the file format.
Pretrained model weights for the UDify model, and extracted BERT weights in pytorch-transformers format. Note that these weights slightly differ from those used in the paper.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Tokenizer, POS Tagger, Lemmatizer and Parser models for 90 treebanks of 60 languages of Universal Depenencies 2.4 Treebanks, created solely using UD 2.4 data (http://hdl.handle.net/11234/1-2988). The model documentation including performance can be found at http://ufal.mff.cuni.cz/udpipe/models#universal_dependencies_24_models .
To use these models, you need UDPipe binary version at least 1.2, which you can download from http://ufal.mff.cuni.cz/udpipe .
In addition to models itself, all additional data and value of hyperparameters used for training are available in the second archive, allowing reproducible training.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Tokenizer, POS Tagger, Lemmatizer and Parser models for 94 treebanks of 61 languages of Universal Depenencies 2.5 Treebanks, created solely using UD 2.5 data (http://hdl.handle.net/11234/1-3105). The model documentation including performance can be found at http://ufal.mff.cuni.cz/udpipe/models#universal_dependencies_25_models .
To use these models, you need UDPipe binary version at least 1.2, which you can download from http://ufal.mff.cuni.cz/udpipe .
In addition to models itself, all additional data and value of hyperparameters used for training are available in the second archive, allowing reproducible training.
Ministerstvo školství, mládeže a tělovýchovy České republiky@@LM2015071@@LINDAT/CLARIN: Institut pro analýzu, zpracování a distribuci lingvistických dat@@nationalFunds@@✖[remove]55