Incorporation of photosynthetically fixed 14C was studied at different time intervals of 12, 24, and 36 h in various plant parts-leaf 1 to 4 from apex, roots, and rhizome-into primary metabolites-sugars, amino acids, and organic acids, and secondary metabolites-essential oil and curcumin-in turmeric. The youngest leaves were most active in fixing 14C at 24 h. Fixation capacity into primary metabolites decreased with leaf position and time. The primary metabolite levels in leaves were maximal in sugars and organic acids and lowest in amino acids. Roots as well as rhizome received maximum photoassimilate from leaves at 24 h; this declined with time. The maximum metabolite concentrations in the roots and rhizome were high in sugars and organic acids and least in amino acids. 14C incorporation into oil in leaf and into curcumin in rhizome was maximal at 24 h and declined with time. These studies highlight importance of time-dependent translocation of 14C-primary metabolites from leaves to roots and rhizome and their subsequent biosynthesis into secondary metabolite, curcumin, in rhizome. This might be one of factors regulating the secondary metabolite accumulation and rhizome development. and Deeksha Dixit, N. K. Srivastava.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (PN) and stomatal conductance (gs) of attached leaves decreased as leaf water potential (Ψw) declined from -0.3 to -2.9 MPa. Although gs decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (Ci) were observed as Ψw decreased to -1.8 MPa, but Ci increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 µmol m-2 s-1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from -0.3 to -2.9 MPa. A significant linear relationship between mean PN and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower. and W. Tezara, S. Driscoll, D. W. Lawlor.
Changes in leaf growth, photosynthetic efficiency, and incorporation pattern of photosynthetically fixed 14CO2 in leaves 1 and 2 from plant apex, in roots, and rhizome induced in Curcuma by growing in a solution culture at Fe concentration of 0 and 5.6 g m-3 were studied. 14C was incorporated into primary metabolites (sugars, amino acids, and organic acids) and secondary metabolites (essential oil and curcumin). Fe deficiency resulted in a decrease in leaf area, its fresh and dry mass, chlorophyll (Chl) content, and CO2 exchange rate at all leaf positions. The rate of 14CO2 fixation declined with leaf position, maximum being in the youngest leaf. Fe deficiency resulted in higher accumulation of sugars, amino acids, and organic acids in leaves at both positions. This is due to poor translocation of metabolites. Roots and rhizomes of Fe-deficient plants had lower concentrations of total photosynthate, sugars, and amino acids whereas organic acid concentration was higher in rhizomes. 14CO2 incorporation in essential oil was lower in the youngest leaf, as well as incorporation in curcumin content in rhizome. Fe deficiency influenced leaf area, its fresh and dry masses, CO2 exchange rate, and oil and curcumin accumulation by affecting translocation of assimilated photosynthates. and Deeksha Dixit, N. K. Srivastava.
Patterns of fluorescence and colony tissue, colour were studied (field observations and epifluorescence microscopy) in six species of the coral genus Madracis over depth from 10 to 60 m at a reef slope in Curaçao. Two functions showed up: (1) Decrease in number of colourmorphs (n = 25) with depth suggests a photo-protective function where short wavelengths (e.g. UV) are transformed to long wavelengths, (2) Green fluorescence, observed in four species over their entire depth range, transforms radiation to wavelengths useful for photosynthesis. The observed patterns in fluorescence between species did not correspond to the current taxonomic classification. Our results do not support the usefulness of fluorescence as a taxonomic tool in corals. and M. J. A. Vermeij ... [et al.].
Life and research results of Pavel Siffel, a talented but untimely deceased Czech scientist in photosynthesis, are reviewed. He studied biophysics and physiology of chlorophyll, its complexes with proteins, their absorption and fluorescence spectra, activities in mutants and transformants, dealt with chlorophyll biosynthesis and protochlorophyllide photoreduction, pigments in plants grown at CO2 deficiency and under simulated acid rain, with changes accompanying leaf and plant development, photobleaching, etc. He participated in construction of specialised spectrofluorometers, finally he built the kinetic spectrophotometer SpeKin. and J. Květoň ... [et al.].