This study was designed to test the hypothesis that the spectral composition of incident radiation, as defined by the relative proportions of blue (B; λmax = 455 nm) and red (R; λmax = 625 nm) photons, can affect photosynthetic induction, since B photons stimulate stomatal opening and are more effectively absorbed by leaves than R photons. Different stages of photosynthetic induction, primarily determined by the photo-modulation of Rubisco activity and stomata opening, were investigated in dark-adapted leaves of Fagus sylvatica transferred to saturating irradiance [800µmol(photon) m-2 s-1] at B/R ratios of 1/3, 1/1, or 3/1.
In agreement with our hypothesis, photosynthesis was induced faster by irradiance with a high B/R ratio (3/1); as demontrated by a higher IS60 (induction state 60 s after leaf illumination) and lower T 90 (the time period required to reach 90 % of maximum steady-state photosynthesis). However, there were no differences in induction between leaves receiving equal (1/1) and low (1/3) B/R ratios. Electron transport was highly sensitive to radiation quality, exhibiting faster induction kinetics with increasing B/R ratio. Such stimulation of carbon-assimilatory processes corresponds with faster activation of Rubisco and lower non-photochemical quenching (NPQ) as the proportion of B photons is increased. In contrast, the kinetics of stomatal opening was independent of the spectral composition of incoming radiation. Since slightly higher absorption efficiency of high B/R radiation does not fully explain the changes in induction kinetics, the other possible mechanisms contributing to the stimulation of electron transport and Rubisco activity are discussed. and M. Košvancová-Zitová ... [et al.].
This article provides a critical edition and exposition of several phrases from scholastic poems (or from two or four combined poems) with the incipit Ex fideli veterum scriptura cognovi (Walther, Initia No. 5984), whose authorship is ascribed to the protonotary of Václav IV., Vlachník of Weitmile († 1399), inspired by the intellectual atmosphere of the Prague Court.
Changes in leaf growth, net photosynthetic rate (PN), incorporation pattern of photosynthetically fixed 14CO2 in leaves 1-4 from top, roots, and rhizome, and in essential oil and curcumin contents were studied in turmeric plants grown in nutrient solution at boron (B) concentrations of 0 and 0.5 g m-3. B deficiency resulted in decrease in leaf area, fresh and dry mass, chlorophyll (Chl) content, and PN and total 14CO2 incorporated at all leaf positions, the maximum effect being in young growing leaves. The incorporation of 14CO2 declined with leaf position being maximal in the youngest leaf. B deficiency resulted in reduced accumulation of sugars, amino acids, and organic acids at all leaf positions. Translocation of the metabolites towards rhizome and roots decreased. In rhizome, the amount of amino acids increased but content of organic acids did not show any change, whereas in roots there was decrease in contents of these metabolites as a result of B deficiency. Photoassimilate partitioning to essential oil in leaf and to curcumin in rhizome decreased. Although the curcumin content of rhizome increased due to B deficiency, the overall rhizome yield and curcumin yield decreased. The influence of B deficiency on leaf area, fresh and dry masses, CO2 exchange rate, oil content, and rhizome and curcumin yields can be ascribed to reduced photosynthate formation and translocation. and Deeksha Dixit, N. K. Srivastava, S. Sharma.
iH026a is a formulation containing a biochemical class of plant growth regulator that modulates glycoconjugation through the plant lectin cycle. While lectins are common to vascular plants, we observed, consistent with reversible binding of sugars from lectins, enhancements of quantities and qualities of various features, including significant enrichment of Brix soluble sugars compared to controls in cherry, grape, and melon in trials conducted in Arizona and California, USA., A. M. Nonomura, A. Pedersen, D. P. Brummel, L. Loveless, A. Lauria, B. Haschemeyer, M. S. McBride, and Obsahuje bibliografické odkazy
Anthropogenic activities and improper uses of phosphate fertilizers have led to an increase in cadmium concentrations in agricultural soils. Brassinosteroids are steroid hormones that are rapidly assimilated and metabolised with beneficial roles in physiological and biochemical processes in plants. Our aim was to ascertain whether exogenous treatment with 24-epibrassinolide (EBR) can mitigate the Cd toxicity, and whether this substance can reduce the Cd accumulation in plant tissues. Furthermore, the dose response to EBR was determined following exposure to Cd in Vigna unguiculata. The experiment was a completely randomised factorial design with two concentrations of Cd (0 and 500 μM) and three concentrations of EBR (0, 50, and 100 nM). Spraying plants exposed to Cd with EBR significantly reduced the concentrations of Cd and increased nutrient contents in all tissues. The EBR treatment caused significant enhancements in leaf, root, and total dry matter. Foliar application of EBR reduced the negative effects of Cd toxicity on chlorophyll fluorescence and gas exchange parameters. Pretreatment with EBR also increased contents of pigments in plants exposed to Cd, compared with the identical treatments without EBR. Cd elevated contents of oxidant compounds, inducing cell damages, while EBR significantly decreased the concentrations of these compounds. We confirmed that EBR mitigated the negative effects related to Cd toxicity, reduced the absorption and transport of Cd, and increased the contents of essential elements. In plants exposed to Cd, the most apparent dose response was found for 100 nM EBR, with beneficial repercussions on growth, gas exchange, primary photosynthetic processes, and photosynthetic pigments, which were intrinsically connected to lower production of oxidant compounds and cell damage., L. R. Santos, B. L. Batista, A. K. S. Lobato., and Obsahuje bibliografii