Nikoli poprvé se představuje Akademie věd ČR na výstavách putujících po českých městech: a nejinak je tomu i v roce, kdy si připomíná 125 let od založení své předchůdkyně - České akademie věd a umění. Začátkem června se do ulic vydala expozice „Umění vědy“, jež na 18 velkoformátových plakátech ukazuje, jaké objevy vědců z pracovišť AV ČR obohatily život společnosti, které výzkumy jsou nadějným příslibem do budoucna či v jakých případech se o jejich využití diskutuje. and Luděk Svoboda.
Predicting surface deformations caused by underground mining is an issue of significance both for the safety of overlaying facilities and for economic purposes. There are many different models for predicting the impact of underground mining on the land surface. One of them is the Knothe model commonly used in Poland and in the world. The paper presents two methods of estimating Knothe model parameters uncertainty. The parallel application of two methods enables the mutual verification of the results obtained and the identification of the potential errors and their sources in the case of any discrepancies. The first method is based on the so-called law of propagation of uncertainty, which in essence is the approximation based on the first-order Taylor series expansion. The second presented method is based on the Monte Carlo simulation.
This article describes statistical evaluation of the computational model for precipitation forecast and proposes a method for uncertainty modelling of rainfall-runoff models in the Floreon+ system based on this evaluation. The Monte-Carlo simulation method is used for estimating possible river discharge and provides several confidence intervals that can support the decisions in operational disaster management. Experiments with other parameters of the model and their influence on final river discharge are also discussed.
The Weinstein transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization and a variant of Cowling-Price theorem, Miyachi's theorem, Beurling's theorem, and Donoho-Stark's uncertainty principle are obtained for the Weinstein transform.