This study sought to evaluate whether consumption of polyphenol extract from Cognac (CPC) modulates platelet activation and cardiovascular reactivity in rats. Male Wistar rats were treated daily for 4 weeks by intra-gastric gavage receiving CPC at 80 mg/kg/day or vehicle (5 % glucose). Platelet adhesion and aggregation in response to different activators were assessed. Cardiac and vascular reactivity in response to various agonists as well as NO measurement by electron paramagnetic resonance technique were investigated in isolated heart and thoracic aorta. Oral administration of CPC decreased platelet aggregation induced by ADP but not by collagen. CPC did not affect adhesion to collagen. The chronotropic but not the inotropic response to isoprenaline was reduced without alteration of NO production in hearts from CPC-treated rats. CPC treatment did not affect ex vivo relaxation to acetylcholine nor NO content of rat aorta. CPC did not significantly alter the response to phenylephrine in aorta despite the participation of endothelial vasoconstrictor products. In summary, chronic treatment with CPC has no impact on ex vivo vascular and cardiac reactivity; however, it reduced heart work and platelet aggregation. These data suggest the existence of compounds in Cognac that may decrease the risk of coronary thrombosis and protect against some cardiac diseases., N. Carusio, R. Wangensteen, A. Filippelli, R. Andriantsitohaina., and Obsahuje bibliiografii a bibliografické odkazy
Orexins (orexin A and B) are initially known to be a hypothalamic peptide critical for feeding and normal wakefulness. In addition, emerging evidence from behavioral tests suggests that orexins are also involved in the regulation of nociceptive processing, suggesting a novel potential therapeutic approach for pain treatment. Both spinal and supraspinal mechanisms appear to contribute to the role of orexin in nociception. In the spinal cord, dorsal root ganglion (DRG) neurons are primary afferent neurons that transmit peripheral stimuli to the pain-processing areas. Morphological results show that both orexin A and orexin-1 receptor are distributed in DRG neurons. Moreover, by using whole-cell patch-clamp recordings and calcium imaging measurements we found that orexin A induced excitability and intracellular calcium concentration elevation in the isolated rat DRG neurons, which was mainly dependent on the activation of spinal orexin-1 receptor. Based on these findings, we propose a hypothesis that the direct effect of orexin A on DRG neurons would represent a possible mechanism for the orexinergic modulation of spinal nociceptive transmission., J.-A. Yan, L. Ge, W. Huang, B. Song, X.-W. Chen, Z.-P. Yu., and Obsahuje bibliografii a bibliografické odkazy
The microcirculation plays a crucial role in the interaction between blood and tissues both in physiological and pathophysiological states. Despite its critical role in numer ous diseases including diabetes, hypertension, sepsis or multiple organ failure, methods for direct visualization and quantitative assessm ent of human microcirculation at the bedside are limited. Orthogonal polarization spectral (OPS) imaging is a relatively new noninvasive method for assessment of human microcirculation without using fluorescent dyes. Recent clinical studies using OPS imaging in various pathological states have shown a wide spectrum of different clinical applications with evident impact on the diagnosis, treatment or prognosis assessment. Thus, there is a great effort to validate OPS imaging for various clinical purposes. The principles of OPS imaging, validation studies, its advantages, limitations, methods of quantitative assessment and current experience in clinical practice are discussed., V. Černý, Z. Turek, R. Pařízková., and Obsahuje bibliografii a bibliografické odkazy
It was hypothesized that an oscillation of tissue oxygen index (TOI) determined by near-infrared spectroscopy during recovery from exercise occurs due to feedback control of adenosine triphosphate and that frequency of the oscillation is affected by blood pH. In order to examine these hypotheses, we aimed 1) to determine whether there is an oscillation of TOI during recovery from exercise and 2) to determine the effect of blood pH on frequency of the oscillation of TOI. Three exercises were performed with exercise intensities of 30 % and 70 % peak oxygen uptake (Vo2peak) for 12 min and with exercise intensity of 70 % Vo2peak for 30 s. TOI during recovery from the exercise was analyzed by fast Fourier transform in order to obtain power spectra density (PSD). There was a significant difference in the frequency at which maximal PSD of TOI appeared (Fmax) between the exercises with 70 % Vo2peak for 12 min (0.0039±0 Hz) and for 30 s (0.0061±0.0028 Hz). However, there was no significant difference in Fmax between the exercises with 30 % (0.0043±0.0013 Hz) and with 70 % Vo2peak for 12 min despite differences in blood pH and blood lactate from the warmed fingertips. It is concluded that there was an oscillation in TOI during recovery from the three exercises. It was not clearly shown that there was an effect of blood pH on Fmax., T. Yano, R. Afroundeh, K. Shirakawa, C.-S. Lian, K. Shibata, Z. Xiao, T. Yunoki., and Obsahuje bibliografii
A mathematical description is presented of osmotic flows across both ideally semipermeable membranes and membranes permeable not only for the solvent but also for the solute. The principles of thermodynamics of irreversible processes used for the description are given and illustrated on the example of electroosmosis. Modern ideas about the physical basis of osmotic pressure on porous membranes are discussed and an experiment is described that models the processes of osmosis on a macroscopic level., K. Janáček, K. Sigler., and Obsahuje bibliografii
Osteoporosis in chronic diseases is very frequent and pathogenetically varied. It complicates the course of the underlying disease by the occurrence of fractures, which aggravate the quality of life and increase the mortality of patients from the underlying disease. The secondary deterioration of bone quality in chronic diseases, such as diabetes of type 1 and type 2 and/or other endocrine and metabolic disorders, as well as inflammatory diseases, including rheumatoid arthritis - are mostly associated with structural changes to collagen, altered bone turnover, increased cortical porosity and damage to the trabecular and cortical microarchitecture. Mechanisms of development of osteoporosis in some inborn or acquired disorders are discussed., I. Zofkova, P. Nemcikova., and Obsahuje bibliografii
We studied the relationship between blood pressure (BP), body mass index (BMI, kg/m2) and baroreflex sensitivity (BRS, ms/mmHg) in adolescents. We examined 34 subjects aged 16.2±2.4 years who had repeatedly high causal BP (H) and 52 controls (C) aged 16.4±2.2 years. Forty-four C and 22 H were of normal weight (BMI between 19-23.9), and 8 C and 12 H were overweight (BMI between 24-30). Systolic BP was recorded beat-to-beat for 5 min (Finapres, controlled breathing 0.33 Hz). BRS was determined by the cross-spectral method. The predicting power of BMI and BRS for hypertension was evaluated by sensitivity, specificity, and receiver operating curve (ROC - plot of sensitivity versus specificity). H compared with C had lower BRS (p<0.01) and higher BMI (p<0.05). Multiple logistic regression analysis (p<0.001) revealed that a decreased BRS (p<0.05) and an increased BMI (p<0.01) were independently associated with an increased risk of hypertension. No correlation between BMI and BRS was found either in H or in C. Following optimal critical values by ROC, the sensitivity, specificity and area under ROC were determined for: BMI - 22.2 kg/m2, 61.8 %, 69.2 %, 66.0 %; BRS - 7.1 ms/mmHg, 67.7 %, 69.2 %, 70.0 %; BMI and BRS - 0.439 a.u., 73.5 %, 82.7 %, and 77.3 %. Decreased BRS and overweight were found to be independent risk factors for hypertension., K. Krontorádová, N. Honzíková, B. Fišer, Z. Nováková, E. Závodná, H. Hrstková, P. Honzík., and Obsahuje bibliografii a bibliografické odkazy
Oxidative stress is a phenomenon associated with imbalance between production of free radicals and reactive metabolites (e.g. superoxide and hydrogen peroxide) and the antioxidant defences. Oxidative stress in individuals with Down syndrome (DS) has been associated with trisomy of the 21st chromosome resulting in DS phenotype as well as with various morphological abnormalities, immune disorders, intellectual disability, premature aging and other biochemical abnormalities. Trisomy 21 in patients with DS results in increased activity of an important antioxidant enzyme Cu/Zn superoxide dismutase (SOD) which gene is located on the 21st chromosome along with other proteins such as transcription factor Ets-2, stress inducing factors (DSCR1) and precursor of beta-amyloid protein responsible for the formation of amyloid plaques in Alzheimer disease. Mentioned proteins are involved in the management of mitochondrial function, thereby promoting mitochondrial theory of aging also in people with DS. In defence against toxic effects of free radicals and their metabolites organism has built antioxidant defence systems. Their lack and reduced function increases oxidative stress resulting in disruption of the structure of important biomolecules, such as proteins, lipids and nucleic acids. This leads to their dysfunctions affecting pathophysiology of organs and the whole organism. This paper examines the impact of antioxidant interventions as well as positive effect of physical exercise on cognitive and learning disabilities of individuals with DS. Potential terapeutic targets on the molecular level (oxidative stress markers, gene for DYRK1A, neutrophic factor BDNF) after intervention of natural polyphenols are also discussed., J. Muchová, I Žitňanová, Z. Ďuračková., and Obsahuje bibliografii
Malondialdehyde (MDA), Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and selenium-dependent glutathione peroxidase (GSPHx) are currently considered to be basic markers of oxidative stress. MDA is one of the end-products of the peroxidation of membrane lipids, whereas enzymes Cu,Zn-SOD and GSHPx belong to the natural antioxidants. The role of oxygen free radicals in the pathogenesis of many diseases is well documented. The aim of this study was to ascertain the influence of insulin-induced acute hypoglycemia on oxidative stress in the brain tissue. Hypoglycemia was induced in ICR mice by intraperitoneal administration of insulin at a dose 24 IU/kg. There was a correlation between the severity of hypoglycemia and the levels of MDA, Cu,Zn-SOD and GSHPx. The results showed that in severe hypoglycemia (serum glucose concentration below 1.0 mmol/l) the lipoperoxidation in brain tissue expressed as the level of MDA was higher in comparison with normoglycemic controls (glycemia around 3.7 mmol/l) as well as in comparison with the levels of MDA during moderate hypoglycemia (glycemia ranging between 1-2 mmol/l). This indicates the enhancement of lipoperoxidation in the brain tissue during severe hypoglycemia. However, both enzymes - Cu,Zn-SOD or GSHPx - did not show a similar tendency., J. Patočková, P. Marhol, E. Tůmová, M. Kršiak, R. Rokyta, S. Štípek, J. Crkovská, M. Anděl., and Obsahuje bibliografii