Although the quantification of real evapotranspiration (ETr) is a prerequisite for an appropriate estimation of the water balance, precision and uncertainty of such a quantification are often unknown. In our study, we tested a combined growth and soil water balance model for analysing the temporal dynamics of ETr. Simulated ETr, soil water storage and drainage rates were compared with those measured by 8 grass-covered weighable lysimeters for a 3-year period (January 1, 1996 to December 31, 1998). For the simulations, a soil water balance model based on the Darcy-equation and a physiological-based growth model for grass cover for the calculation of root water uptake were used. Four lysimeters represented undisturbed sandy soil monoliths and the other four were undisturbed silty-clay soil monoliths. The simulated ETr-rates underestimated the higher ETr-rates observed in the summer periods. For some periods in early and late summer, the results were indicative for oasis effects with lysimeter-measured ETr-rates higher than corresponding calculated rates of potential grass reference evapotranspiration. Despite discrepancies between simulated and observed lysimeter drainage, the simulation quality for ETr and soil water storage was sufficient in terms of the Nash-Sutcliffe index, the modelling efficiency index, and the root mean squared error. The use of a physiological-based growth model improved the ETr estimations significantly.
Understanding and modelling the processes of flood runoff generation is still a challenge in catchment hydrology. In particular, there are issues about how best to represent the effects of the antecedent state of saturation of a catchment on runoff formation and flood hydrographs. This paper reports on the experience of mapping saturated areas using measured water table by piezometers and more qualitative assessments of the state of the moisture at soil surface or immediately under it to provide information that can usefully condition model predictions. Vegetation patterns can also provide useful indicators of runoff source areas, but integrated over much longer periods of time. In this way, it might be more likely that models will get the right predictions for the right reasons.
Photosynthetic characteristics of two hybrid rice combinations, Peiai 64S/E32 and Shanyou 63, were compared at the panicle differentiation stage. As compared with Shanyou 63, the new combination Peiai 64S/E32 showed a significantly higher net photosynthetic rate (PN), apparent quantum yield of carbon assimilation (Φc), carboxylation efficiency (CE), and photorespiratory rate (RP) as well as leaf chlorophyll content, but a significantly lower dark respiration rate (RD) and compensation irradiance (Ic). It also showed a slightly higher photochemical efficiency (Fv/Fm and ΔF/Fm') of photosystem 2, a lower non-photochemical quenching (qN), and a similar CO2 compensation concentration (Γ) as compared to Shanyou 63. and Hua Jiang ... [et al.].
Hereditary hypertriglyceridemic (hHTG) rats are characterized by increased blood pressure and impaired endotheliumdependent relaxation of conduit arteries. The aim of this study was to investigate the effect of long-term (4 weeks) treatment of hHTG rats with three drugs which, according to their mechanism of action, may be able to modify the endothelial function: simvastatin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase), spironolactone (an antagonist of aldosterone receptors) and L-arginine (a precursor of nitric oxide formation). At the end of 4th week the systolic blood pressure in the control hHTG group was 148±2 mm Hg and in control normotensive Wistar group 117±3 mm Hg. L-arginine failed to reduce blood pressure, but simvastatin (118±1 mm Hg) and spironolactone (124±4 mm Hg) treatment significantly decreased the systolic blood pressure. In isolated phenylephrine-precontracted aortic rings from hHTG rats endothelium-dependent relaxation was diminished as compared to control Wistar rats. Of the three drugs used, only simvastatin improved acetylcholine-induced relaxation of the aorta. We conclude that both simvastatin and spironolactone reduced blood pressure but only simvastatin significantly improved endothelial dysfunction of aorta. Prominent increase in the expression of eNOS in large conduit arteries may be the pathophysiological mechanism underlying the protective effect of simvastatin in hHTG rats., J. Török, I. L'upták, J. Matúšková, O. Pecháňová, J. Zicha, J. Kuneš, F. Šimko., and Obsahuje bibliografii
Seedlings of Chloris virgata were treated with varying (0-160 mM) salt-stress (SS; 1 : 1 molar ratio of NaCl to Na2SO4) or alkali-stress (AS; 1 : 1 molar ratio of NaHCO3 to Na2CO3). To compare these effects, relative growth rates (RGR), stored energy, photosynthetic pigment contents, net photosynthetic rates, stomatal conductance, and transpiration rates were determined. Both stresses did not change significantly the photosynthetic parameters of C. virgata under moderate stress (below 120 mM). Photosynthetic ability decreased significantly only at high stress (160 mM). Thus C. virgata, a natural alkali-resistant halophyte, adapts better to both kinds of stress. The inhibition effects of AS on RGR and energy storage of C. virgata were significantly greater than that of SS of the same intensity. The energy consumption of C. virgata was considerably greater while resisting AS than while resisting SS. and C. W. Yang ... [et al.]
In the study of Tomlain (1997) a soil water balance model was applied to evaluate the climate change impacts on the soil water storage in the Hurbanovo locality (Southwestern Slovakia), using the climate change scenarios of Slovakia for the years 2010, 2030, and 2075 by the global circulation models CCCM, GISS and GFD3. These calculations did not take into consideration neither the various soil properties, nor the groundwater table influence on soil water content. In this study, their calculated data were compared with those monitored at the same sites. There were found significant differences between resulting soil water storage of the upper 100 cm soil layer, most probably due to cappilary rise from groundwater at sites 2 and 3. It was shown, that the soil properties and groundwater table depth are importat features strongly influencing soil water content of the upper soil layer; thus the application of the soil water balance equation (Eq. (1)), neglecting the above mentioned factors, could lead to the results far from reality. and V práci Tomlaina (1997) bol aplikovaný bilančný model vodného režimu pôd na ohodnotenie dopadu klimatickej zmeny na vodné zásoby pôdy v lokalite Hurbanovo (juhozápadné Slovensko), použijúc scenáre klimatickej zmeny pre Slovensko pre roky 2010, 2030 a 2075, založené na globálnych cirkulačných modeloch CCCM, GISS a GFD3. V týchto výpočtoch nebol braný do úvahy vplyv vlastností pôdy a hladiny podzemnej vody na vlhkosť pôdy. V práci boli porovnané vypočítané hodnoty zásob vody s monitorovanými v tej istej lokalite. Bol nájdený význačný rozdiel medzi zásobami vody v 100-cm hornej vrstve pôdy najpravdepodobnejšie spôsobený kapilárnym prítokom od hladiny podzemnej vody v monitorovacích miestach 2 a 3. Bolo ukázané, že pôdne vlastnosti a hĺbka hladiny podzemnej vody sú dôležitými faktormi, ktoré silno ovplyvňujú vlhkosť hornej vrstvy pôdy; z toho vyplýva, že aplikácia bilančnej rovnice (rov. (1)), ktorá zanedbáva vyššie uvedené faktory, nedáva reálne výsledky.
In this study, susceptibility of inbred C57BL/6 and outbred NMRI mice to monosodium glutamate (MSG) obesity or diet-induced obesity (DIO) was compared in terms of food intake, body weight, adiposity as well as leptin, insulin and glucose levels. MSG obesity is an early-onset obesity resulting from MSG-induced lesions in arcuate nucleus to neonatal mice. Both male and female C57BL/6 and NMRI mice with MSG obesity did not differ in body weight from their lean controls, but had dramatically increased fat to body weight ratio. All MSG obese mice developed severe hyperleptinemia, more remarkable in females, but only NMRI male mice showed massive hyperinsulinemia and an extremely high HOMA index that pointed to development of insulin resistance. Diet-induced obesity is a late-onset obesity; it developed during 16-week-long feeding with high-fat diet containing 60 % calories as fat. Inbred C57BL/6 mice, which are frequently used in DIO studies, both male and female, had significantly increased fat to body weight ratio and leptin and glucose levels compared with their appropriate lean controls, but only female C57BL/6 mice had also significantly elevated body weight and insulin level. NMRI mice were less prone to DIO than C57BL/6 ones and did not show significant changes in metabolic parameters after feeding with high-fat diet., R. Matyšková, L. Maletínská, J. Maixnerová, Z. Pirník, A. Kiss, B. Železná., and Obsahuje bibliografii a bibliografické odkazy
The pericarp of cereal crops is considered a photosynthetically active tissue. Although extensive studies have been performed on green leaves, the photosynthetic role of the pericarp in cereal caryopsis development has not been well investigated. In the present study, we investigated the anatomy, ultrastructure, chlorophyll (Chl) fluorescence, and oxygen evolution of the pericarp during caryopsis ontogenesis in field wheat (Triticum aestivum L.). The results showed that wheat pericarp cross-cells contained Chl; the grana stacks and thylakoid membranes in the cross-cells were more distinct in the pericarp than those in the flag leaves as shown by transmission electron microscopy. Chl fluorescence revealed that the photosynthetic efficiency, which was indicated by values of maximum efficiency of PSII photochemistry and effective PSII quantum yield, was lower in the pericarp compared to that of the flag leaf eight days after anthesis (DAA), whereas similar values were subsequently observed. The nonphotochemical quenching values were lower from 8-16 DAA but significantly increased in the pericarp from 24-32 DAA compared to the flag leaf. The oxygen evolution rate of the flag leaves was consistently higher than that of pericarp; notably, isolated pericarps released more oxygen than intact pericarps during caryopsis development. These results suggest that the pericarp plays a key role in caryopsis development by performing photosynthesis as well as by supplying oxygen to the endosperm and dissipating excessive energy during the
grain-filling stages., L. A. Kong , Y. Xie, M. Z. Sun, J. S. Si, L. Hu., and Obsahuje seznam literatury
The diurnal trends of gas exchange and chlorophyll fluorescence parameters in four Lycoris species (L. houdyshelii, L. aurea, L. radiata var. pumila and L. albiflora) were determined and compared with a portable photosynthesis analysis system. Our study revealed that L. houdyshelii had the lowest light compensation point (LCP), while the other three species had higher LCP (12.37-14.99 μmol m-2 s-1); L. aurea had the highest light saturation point (LSP) (1,189 μmol m-2 s-1), and L. houdyshelii and L. albiflora had lower LSP with the values being 322 and 345 μmol m-2 s-1, respectively, and L. radiata var. pumila showed the intermediate LSP. Both the species L. houdyshelii and L. albiflora exhibited a typical and obvious decline in net photosynthetic rate (PN) during midday, which was not observed in L. aurea. This indicated a possible photoinhibition in L. houdyshelii and L. albiflora as the ratio of variable to maximum fluorescence (Fv/Fm) values were higher in these two species. The minimal fluorescence (F0) values were lower in L. aurea and L. radiata var. pumila. The diurnal changes of transpiration rate (E) in all four species presented only one peak, appearing between 11:00 h or 13:00 h. By using simple correlation analyses, it was observed that the environmental factors affecting
PN were different among four species and the main factors were photosynthetic photon flux density (PPFD) and relative humidity especially for L. aurea and L. radiata. The results of studying indicated that the four species could be divided into two groups. The species L. radiata var. pumila and L. aurea were more adapted to a relatively high irradiance, and L. houdyshelii and L. albiflora could be grown in moderate-shade environment in order to scale up their growth and productivity., K. Liu ... [et al.]., and Obsahuje bibliografii
The relative length of telomeres measured in peripheral blood leukocytes is a commonly used system marker for biological aging and can also be used as a biomarker of cardiovascular aging. However, to what extent the telomere length in peripheral leukocytes reflects telomere length in different organ tissues is still unclear. Therefore, we have measured relative telomere length (rTL) in twelve different human tissues (peripheral blood leukocytes, liver, kidney, heart, spleen, brain, skin, triceps, tongue mucosa, intercostal skeletal muscle, subcutaneous fat, and abdominal fat) from twelve cadavers (age range of 29 week of gestation to 88 years old). The highest rTL variability was observed in peripheral leukocytes, and the lowest variability was found in brain. We found a significant linear correlation between leukocyte rTL and both intercostal muscle (R=0.68, P<0.02) and liver rTL (R=0.60, P<0.05) only. High rTL variability was observed between different organs from one individual. Furthermore, we have shown that even slight DNA degradation (modeled by sonication of genomic DNA) leads to false rTL shortening. We conclude that the rTL in peripheral leukocytes is not strongly correlated with the rTL in different organs., D. Dlouha, J. Maluskova, I. Kralova Lesna, V. Lanska, J. A. Hubacek., and Obsahuje bibliografii