Excessive levels of bicarbonate adversely affect the growth and metabolism of plants. Broussonetia papyrifera (L.) Vent. and Morus alba L., belonging to family Moraceae, possess the favorable characteristics of rapid growth and adaptability to adverse environments. We examined the response of these two plant species to bicarbonate stress in terms of photosynthetic assimilation of inorganic carbon. They were exposed to 10 mM sodium bicarbonate in the culture solution for 20 days. The photosynthetic response was determined by measuring the net photosynthetic rate of the leaf, water-use efficiency, and chlorophyll fluorescence on days 10 and 20. The bicarbonate-use capacity of the plants was studied by measuring the carbonic anhydrase activity and the compositions of the stable carbon and hydrogen isotopes. The photosynthetic response to high concentration of bicarbonate varied with plant species and treatment durations. High concentrations of bicarbonate decreased the photosynthetic assimilation of inorganic carbon in the two plant species to half that in the control plants on day 10. Bicarbonate treatment did not cause any damage to the reaction centers of photosystem II in Morus alba; it, however, caused a decline in the quantum efficiency of photosystem II in B. papyrifera on day 20. Moreover, B. papyrifera had a greater bicarbonate-use capacity than M. alba because carbonic anhydrase converted bicarbonate to CO2 and H2O to a greater extent in B. papyrifera. This study showed that the effect of bicarbonate on photosynthetic carbon metabolism in plants was dual. Therefore, the concentration of bicarbonate in the soil should first be considered during afforestation and ecological restoration in karst areas., Y. Y. Wu, D. K. Xing., and Obsahuje bibliografii
The aim of this study was to investigate nitric oxide (NO) production and L-NAME-sensitive component of endothelium-dependent vasorelaxation in adult normotensive Wistar-Kyoto rats (WKY), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR). Blood pressure (BP) of WKY, BHR and SHR (determined by tailcuff) was 111±3, 140±4 and 184±6 mm Hg, respectively. NO synthase activity (determined by conversion of [3H]-Larginine) was significantly higher in the aorta of BHR and SHR vs. WKY and in the left ventricle of SHR vs. both BHR and WKY. L-NAME-sensitive component of endothelium-dependent relaxation was investigated in the preconstricted femoral arteries using the wire myograph during isometric conditions as a difference between acetylcholine-induced relaxation before and after acute NG-nitro-L-arginine methyl ester pre-treatment (L-NAME, 10-5 mol/l). Acetylcholineinduced vasorelaxation of SHR was significantly greater than that in WKY. L-NAME-sensitive component of vasorelaxation in WKY, BHR and SHR was 20±3 %, 29±4 % (p<0.05 vs. WKY) and 37±3 % (p<0.05 vs. BHR), respectively. There was a significant positive correlation between BP and L-NAME-sensitive component of relaxation of the femoral artery. In conclusion, results suggest the absence of endothelial dysfunction in the femoral artery of adult borderline and spontaneously hypertensive rats and gradual elevation of L-NAME-sensitive component of vasorelaxation with increasing blood pressure., A. Púzserová, Z. Csizmadiová, I. Bernátová., and Obsahuje bibliografii
The aim of the study was to the assess the influence of Ca/Mg ions ratio on the photosynthetic activity of Salix viminalis L. ‘Cannabina’ plants cultivated in medium enriched with Cu(NO3)2. The experiment was conducted in controlled conditions in a phytotron for 21 days; hence the early plant response was tested. Plants were cultivated with different Ca/Mg ions ratios, i.e. (4:1)l, (4:1)h, and 1:10. Plants were additionally treated with Cu(NO3)2 at 1, 2, and 3 mM concentration in cultivation medium. Net photosynthetic rate, stomatal conductance and transpiration were measured after the first, second and third week of cultivation. Additionally, chlorophyll content, leaf morphology, root biomass and copper accumulation in leaves and roots were investigated. The investigations revealed differences in plant response to particular treatments - differences in Cu accumulation for particular Ca/Mg ions ratios were detected. It seems that plants are adapted to high Cu2+ concentrations, when 1:10 Ca/Mg ions ratio is applied. The highest Cu accumulation in roots was noted for plants fertilized with 1:10 Ca/Mg ions ratio, together with high Cu translocation to above-ground plant organs, which suggests its higher potential in phytoremediation., K. Borowiak ... [et al.]., and Obsahuje bibliografii
The aim of the present study was to determine the effect of angiotensin-converting enzyme inhibitor captopril on cGMP and cAMP concentration in the left ventricle and aorta after NO synthase inhibition by 4-week-lasting NG-nitro-L-arginine-methyl ester (L-NAME) treatment. Five groups of rats were investigated: controls, L-NAME in the dose 20 mg/kg/day (L-NAME 20), L-NAME in the dose 40 mg/kg/day (L-NAME 40), captopril in the dose 100 mg/kg/day, L-NAME 40 mg/kg/day together with captopril 100 mg/kg/day. Captopril completely prevented L-NAME-induced hypertension and LV hypertrophy development. Compared to the controls, cGMP concentration in the L-NAME 20 and L-NAME 40 groups was decreased by 13 % and 22 %, respectively, in the left ventricle and by 27 % and 56 % in the aorta, respectively. Captopril did not influence this decrease of cGMP concentration. Cyclic AMP concentration in the aorta of L-NAME 20 group increased by 17 %. In the L-NAME 40 group, cAMP concentration increased by 17 % in the left ventricle and by 34 % in the aorta compared to controls. This increase was enhanced in rats given L-NAME together with captopril. Captopril alone had no effect on cAMP concentration. We conclude that captopril does not affect the concentration of cGMP, however, it has more than the additive effect on the cAMP concentration increase in the cardiovascular system during long-term NO synthase inhibition., O. Pecháňová, I. Bernátová., and Obsahuje bibliografii
Growth, photosynthetic gas exchange, and chlorophyll fluorescence characteristics were investigated in wild type (WT) and Cd-sensitive mutant rice (Oryza sativa L.) plants using 50 µM Cd treatment for 12 d followed by a 3-d recovery. Under Cd stress, net dry mass and pigment contents were significantly lower in the mutant plants than in the WT. The mutant had lower net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) than WT rice, however, it had higher intercellular CO2 concentration (C i), indicating that non-stomatal factors accounted for the inhibition of P N. Maximal photochemical efficiency of photosystem 2 (Fv/Fm), effective quantum yield of PS2 (ΦPS2), and photochemical quenching (qP) decreased much in the mutant under Cd stress. Cd content in roots and leaves of the mutant was significantly higher than those in the WT. Hence Cd toxicity was associated with the marked increases in Cd contents of plant tissue. After the recovery for 3 d, the WT rice had higher capacity to recover from Cd injury than the mutant. and J.-Y. He ... [et al.].
The aim of our study was to evaluate the efficacy of FK506, mycophenolate mofetil (MM) and aminoguanidine (AMG) on infiltration of macrophages (MPHs), neutrophils (NPHs) and dendritic cells (DC) into corneal grafts during the early phases after transplantation (Tx). Tx was performed in mice (C57BL/10 to BALB/c). Therapy included FK506 (0.2 mg/kg), MM (30 mg/kg) or AMG (0.1 g/kg), started at the day of Tx and was injected i.p. daily. Corneas were excised on the 3rd and 7th day after Tx. Immunohistological evaluation using antibodies against MPHs, NPHs and DC was performed and corneal grafts were assessed in the periphery and in central part of the cornea separately. On the 3rd day after Tx, a massive infiltration of MPHs and NPHs into corneal grafts was revealed; the DC in filtration was lower in all treated groups. Treatment with FK506 and MM led to a significant reduction of NPHs in the centers of the grafts, but not of MPHs. In contrast, AMG significantly reduced MPHs migration into allografts on the third day after Tx, whereas NPHs infiltration has not been attenuated. However, immunosuppressants had no influence on the infiltration of DC during early phases after Tx., P. Bysterská, P. Svozílková, H. Farghali., and Obsahuje bibliografii a bibliografické odkazy
In the mutant CC-1047 of Chlamydomonas reinhardtii, LDS-PAGE showed that the chlorophyll-protein complex I (CPI) is almost absent. The mutant could not grow in a culture medium without organic carbon source while the wild type (WT) C. reinhardtii grew quickly. When an organic carbon source was added into the culture medium, the mutant grew almost as well as WT. The rate of photosystem 1 (PS1) electron transport (DCPIP→MV) and the rate of whole chain electron transport (H2O→MV) of chloroplasts of the CC-1047 mutant were both lower than those of WT. The photophosphorylation activity, photosynthetic O2 evolution rate, and rate of NADP+ photoreduction of CC-1047 were also much lower than the activities of WT. There were some differences in ATPase activity between the mutant and WT. Two different activation ways were used to activate the latent ATPase using methanol and dithiothreitol (DTT) as activation substrate. More methanol and DTT were required for the mutant than WT to obtain the maximum activity. Thus the photosynthetic apparatus could not operate normally when CPI was absent because of the abnormal PS1 electron transport. Meanwhile, the other adjacent complexes of the thylakoid membrane, for example, ATP synthase complex, were slightly affected. and Qing-Xiu Tang, Zhang-Lin Ni, Jia-Mian Wei.
Chromate-resistant Chlorella spp. isolated from effluents of electroplating industry could grow in the presence of 30 μM K2Cr2O7. Since photosynthesis is sensitive to oxidative stress, chromate toxicity to photosynthesis was examined in this algal isolate. Chromate [Cr(VI)] up to 100 μM was found to stimulate photosynthesis, while 90% inhibition was found, when the cells were incubated with 1 mM Cr(VI) for 4 h. Photosystem (PS) II was inhibited by 80% and PSI by 40% after such Cr(VI) treatment. Thermoluminescence studies on cells treated with 1 mM Cr(VI) for 4 h showed that S2QA - recombination peak (Q) was shifted to higher temperature, whereas S2/S3QB - recombination peak (B) was shifted to lower temperature. These shifts indicated alga stress response in order to overcome an excitation stress resulting from the inhibition of photosynthesis by Cr(VI). The nontreated Chlorella cells kept in the dark showed periodicity of four for the Q peak (4-8°C) and B peak (34-38°C) after exposure to series of single, turnover, saturating flashes. This periodicity was lost in Cr(VI)-treated cells. Higher concentrations of Cr(VI) inhibited mainly the electron flow in the electron transport chain, inactivated oxygen evolving complex, and affected also Calvin cycle enzymes in the Cr(VI)-resistant isolates of Chlorella. and S. N. Yewalkar, K. N. Dhumal, J. K. Sainis.
We investigated the effect of chromium (20-40 g m-3, 8-72 h) on the photosystem 2 (PS2) activities of Chlorella pyrenoidosa cells. By using chlorophyll fluorescence transients, thermoluminescence, oxygen polarography, and Western blot analysis for D1 protein we found that inhibition of PS2 can be accounted for by the enhanced photodestruction of the reaction centres in the cells cultivated in the presence of Cr(VI) at 25 °C in "white light" (18 W m-2). Hence photodestruction of D1 is caused by an enhanced oxidative stress and lipid peroxidation, as indicated by the appearance of a high-temperature thermoluminescence band. and Z. T. Hörcsik ... [et al.].
The effects of selenium (Se) on antioxidant defense system in liver and kidneys of rats with cadmium (Cd)-induced toxicity were examined. Cd exposure (15 mg Cd/kg b.m./day as CdCl2 for 4 weeks) resulted in increased lipid peroxidation (LP) in both organs (p<0.005 and p<0.01). Vitamin C (Vit C) was decreased in the liver (p<0.005), whereas vitamin E (Vit E) was increased in the liver and kidneys (p<0.005 and p<0.05) of Cd-exposed animals. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were decreased in both tissues (p<0.05 and p<0.005), whereas catalase (CAT) activity was decreased only in liver (p<0.005). Glutathione S-transferase (GST) increased in both tissues (p<0.005 and p<0.01). Treatment with Se (0.5 mg Se/kg b.m./day as Na2SeO3 for 4 weeks) significantly increased liver and kidneys SOD and GSH-Px activities (p<0.05 to p<0.005), as well as CAT and GST activities only in the liver (p<0.01). In animals exposed to Se, both the concentrations of Vit C (p<0.01) and Vit E (p<0.005) were increased in both tissues. Co-treatment with Se resulted in reversal of oxidative stress with significant decline in analyzed tissues Cd burden. Our results show that Se may ameliorate Cd-induced oxidative stress by decreasing LP and altering antioxidant defense system in rat liver and kidneys and that Se demonstrates the protective effect from cadmium-induced oxidative damage., B. I. Ognjanović, S. D. Marković, S. Z. Pavlović, R. V. Žikić, A. Š. Štajn, Z. S. Saičić., and Obsahuje bibliografii a bibliografické odkazy