The present study was undertaken to investigate the effect of Glomus mosseae on chlorophyll (Chl) content, Chl fluorescence parameters and chloroplast ultrastructure of beach plum seedlings under 2% NaCl stress. The results showed that compared to control, both Chl a and Chl b contents of NaCl + G. mosseae treatment were significantly lower during the salt stress, while Chl a/b ratio increased significantly. The increase of minimal fluorescence of darkadapted state (F0), and the decrease of maximal fluorescence of dark-adapted state (Fm) and variable fluorescence (Fv) values were inhibited. The maximum quantum yield of PSII photochemistry (Fv/Fm), the maximum energy transformation potential of PSII photochemistry (Fv/F0) and the effective quantum yield of PSII photochemistry (ΦPSII) increased significantly, especially the latter two variables. The values of the photochemical quenching coefficient (qP) and the nonphotochemical quenching (NPQ) were similar between G. mosseae inoculation and noninoculation. It could be concluded that G. mosseae inoculation could protect the photosystem II (PSII) of beach plum, enhance the efficiency of primary light energy conversion and improve the primitive response of photosynthesis under salinity stress. Meanwhile, G. mosseae inoculation was beneficial to maintain the integrity of thylakoid membrane and to protect the structure and function of chloroplast, which suggested that G. mosseae can alleviate the damage of NaCl stress to chloroplast., X. M. Zai ... [et al.]., and Obsahuje bibliografii
Annona and ginger have prominent uses in traditional medicine; their therapeutic properties have not been sufficiently explored. The ameliorative effect of Annona or ginger extracts on hyperglycaemia associated with oxidative stress, inflammation, and apoptosis in experimentally induced diabetes was addressed. Type 1 diabetes in male rats was induced by a single injection of streptozotocin (STZ; 40 mg/kg, i.p.), then Annona (100 mg/kg) or ginger (200 mg/kg) extracts were orally administered daily for 30 days. The Annona and ginger extracts ameliorated hyperglycaemia, insulin level, glycosylated haemoglobin (HbA1c) and insulin resistance (HOMA-IR) levels in the diabetic rats. The treatments significantly ameliorated liver function enzymes and total proteins; this was confirmed by histopathological examination of liver sections. Annona and ginger extracts significantly reduced elevated malondialdehyde (MDA) and restored activity of antioxidant enzymes in the liver such as glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) and the hepatic content of reduced glutathione (GSH). The oxidative stressdependent inflammation was regulated by both Annona and ginger extracts, which was indicated by down-regulation of TNF-α, NF-κB, pro-apoptotic proteins Bax, p53, and anti-apoptotic protein Bcl-2. Moreover, the expression of insulin receptor (INSR) and glucose transporter 2 (GLUT2) genes was markedly regulated by both these extracts. The results suggest that Annona and ginger extracts ameliorate the hepatic damage resulting from diabetes by advocating antioxidants and modulating apoptotic mediator proteins in the liver of diabetic rats. In conclusion, Annona and ginger extracts have a potential therapeutic effect in the treatment of diabetes and its complications.
Cyanobacterial NDH-1 interacts with PSI to form NDH-1-PSI supercomplex. CpcG2, a linker protein for the PSI-specific peripheral antenna CpcG2-phycobilisome, is essential for stabilization of the supercomplex. Green light (GL) increased the expression of CpcG2 but had little effect, if any, on the expression of NDH-1 and PSI, when compared to the abundance of these components under red light (RL). The increased expression of CpcG2 intensified the band of NDH-1-PSI supercomplex after blue-native gel electrophoresis of the thylakoid membrane, possibly by stabilizing the supercomplex. The activity of NDH-1-dependent cyclic electron transport around PSI increased when cells grown under RL were transferred to a low intensity GL but was suppressed when cells were grown under high intensities of GL. The functionality of PSI showed the same trend. We thus conclude that GL increases the expression of CpcG2, thereby increasing the abundance of the NDH-1-PSI supercomplex and its activity at low GL but not at higher GL., F. Gao, T. Ogawa, W. Ma., and Obsahuje bibliografické odkazy
The role of neuroendocrine responsiveness in the development of orthostatic intolerance after bed rest was studied in physically fit subjects. Head-down bed-rest (HDBR, -6 degrees, 4 days) was performed in 15 men after 6 weeks of aerobic training. The standing test was performed before, after training and on day 4 of the HDBR. Orthostatic intolerance was observed in one subject before and after training. The blood pressure response after training was enhanced (mean BP increments 18±2 vs. 13±2 mm Hg, p<0.05, means ± S.E.M.), although noradrenaline response was diminished (1.38±0.18 vs. 2.76±0.25 mol.l-1, p<0.01). Orthostatic intolerance after HDBR was observed in 10 subjects, the BP response was blunted, and noradrenaline as well as plasma renin activity (PRA) responses were augmented (NA 3.10±0.33 mol.l-1, p<0.001; PRA 2.98±1.12 vs. 0.85±0.15 ng.ml-1, p<0.05). Plasma noradrenaline, adrenaline and aldosterone responses in orthostatic intolerant subjects were similar to the tolerant group. We conclude that six weeks of training attenuated the sympathetic response to standing and had no effect on the orthostatic tolerance. In orthostatic intolerance the BP response induced by subsequent HDBR was absent despite an enhanced sympathetic response., J. Koška, L. Kšinantová, R. Kvetňanský, M. Marko, D. Hamar, M. Vigaš, R. Hatala., and Obsahuje bibliografii
In two winter wheat (Triticum aestivum L.) cultivars differing in their response to high temperature, JD8 (tolerant) and J411 (sensitive) we studied the effect of heat stress on the activities of phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase (RuBPC) in green organs during grain-filling. There were significantly higher PEPC activities and lower RuBPC activities in each of the non-leaf organs (awn, glume, lemma, peduncle, and sheath) than in the flag leaf blade. Under heat stress for 12 d, the activity of RuBPC quickly declined and the activity of PEPC first increased and later declined in all organs, resulting in a great increase of the PEPC/RuBPC ratios in the organs, particularly in non-leaf organs which had a higher PEPC/RuBPC than the flag leaf blade in all times. The PEPC activity and PEPC/RuBPC ratio in every organ of JD8 were higher than those in the same organ of J411. Thus the differences in PEPC activities and PEPC/RuBPC may be associated with the differences in photosynthetic heat tolerance among the organs of the same plant or between the two cultivars. and X. L. Xu, Y.-H. Zhang, Z.-M. Wang.
High irradiance (HI) and high temperature (HT) increased in chloroplasts the content of monogalactosyldiacylglycerol (MGDG) and decreased the contents of digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylinositol (PI). HI and HT accelerated the transformation of DGDG to MGDG. The contents of unsaturated fatty acids in chloroplasts increased, while those of saturated fatty acids decreased. The contents of total carotenoids, neoxanthin, violaxanthin, lutein, and β-carotene increased first, then decreased. The content of chlorophyll decreased. HI caused the unfolding of thylakoids that was not resumed after a 72-h recovery. and F. Y. Liao, H. M. Li, P. He.
a1_Artemisia annua L. produces a compound called artemisinin that is a potent anti-malarial compound. However concentration of artemisinin within the plant is typically low (less than 0.8% of dry mass) and currently supply of the drug by the plant does not meet world demand. This investigation was carried out to determine whether high intensity light treatment would increase production of artemisinin in leaves of A. annua. Photoinhibition (14%) was induced in leaves of A. annua when they were subjected to 6 h of high-intensity light [2,000 μmol(photon) m-2 s-1]. Maximum photochemical efficiency of PSII showed a recovery of up to 95% within 24 h of light induced inhibition. During the light treatment, photochemical efficiency of PSII in leaves of the high-intensity light-treated plants was 38% lower than for those from leaves of plants subjected to a low-intensity-light treatment of 100 μmol(photon) m-2 s-1. Nonphotochemical quenching of excess excitation energy was 2.7 times higher for leaves treated with high-intensity light than for those irradiated with low-intensity light. Elevation in oxidative stress in irradiated leaves increased presence of reactive oxygen species (ROS) including singlet oxygen, superoxide anions, and hydrogen peroxide. Importantly, the concentration of artemisinin in leaves was two-fold higher for leaves treated with high-intensity light, as compared to those treated with low-intensity light. These results indicate that A. annua responds to high irradiance through nonphotochemical dissipation of light energy yet is subject to photoinhibitory loss of photosynthetic capacity. It can be concluded that A. annua is capable of rapid recovery from photoinhibition caused by high light intensity., a2_High light intensity also induced oxidative stress characterized by increased concentration of ROS which enhanced the content of artemisinin. Such a light treatment may be useful for the purpose of increasing artemisinin content in A. annua prior to harvest., M. E. Poulson, T. Thai., and Obsahuje seznam literatury
The objective of this investigation was to evaluate the simultaneous action of light stress and salinity. Pulse amplitude modulated chlorophyll fluorescence, P700 redox state, and pigment analysis were used to assess the impact of high light intensity on Paulownia tomentosa × fortunei and Paulownia elongata × elongata grown on soils with different salinity. It was found that light stress reduced the amount of pigments and the efficiency of photochemical energy conversion, inhibited the maximum and the effective quantum yields of PSII photochemistry, decreased photochemical quenching and photosynthetic rate. Data also showed influence on the primary quinone acceptor (QA) reoxidation, which led to the restriction of the electron flow from QA to plastoquinone and stimulation of the cyclic electron flow. The possible reasons for the increased effects of the light stress under conditions of high salt concentration in soil for Paulownia tomentosa × fortunei are discussed., M. Stefanov, E. Yotsova, Y. Markovska, E. L. Apostolova., and Obsahuje bibliografii
The effect of high temperature (HT) and dehydration on the activity of photosynthetic apparatus and its ability to restore membrane properties, oxygen evolution, and energy distribution upon rehydration were investigated in a resurrection plant, Haberlea rhodopensis. Plants growing under low irradiance in their natural habitat were desiccated to air-dry state at a similar light intensity [about 30 μol(photon) m-2 s-1] under optimal day/night (23/20°C) or high (38/30°C) temperature. Our results showed that HT alone reduced the photosynthetic activity and desiccation of plants at 38°C and it had more detrimental effect compared with desiccation at 23°C. The study on isolated thylakoids demonstrated increased distribution of excitation energy to PSI as a result of the HT treatment, which was enhanced upon the desiccation. It could be related to partial destacking of thylakoid membranes, which was confirmed by electron microscopy data. In addition, the surface charge density of thylakoid membranes isolated from plants desiccated at 38°C was higher in comparison with those at 23°C, which was in agreement with the decreased membrane stacking. Dehydration led to a decrease of amplitudes of oxygen yields and to a loss of the oscillation pattern. Following rehydration, the recovery of CO2 assimilation and fluorescence properties were better when desiccation was performed at optimal temperature compared to high temperature. Rehydration resulted in partial recovery of the amplitudes of flash oxygen yields as well as of population of S0 state in plants desiccated at 23°C. However, it was not observed in plants dehydrated at 38°C. and M. Velitchkova ... [et al.].
Four temperature treatments were studied in the climate controlled growth chambers of the Georgia Envirotron: 25/20, 30/25, 35/30, and 40/35 °C during 14/10 h light/dark cycle. For the first growth stage (V3-5), the highest net photosynthetic rate (PN) of sweet corn was found for the lowest temperature of 28-34 µmol m-2 s-1 while the PN for the highest temperature treatment was 50-60 % lower. We detected a gradual decline of about 1 P N unit per 1 °C increase in temperature. Maximum transpiration rate (E) fluctuated between 0.36 and 0.54 mm h-1 (≈5.0-6.5 mm d-1) for the high temperature treatment and the minimum E fluctuated between 0.25 and 0.36 mm h-1 (≈3.5-5.0 mm d-1) for the low temperature treatment. Cumulative CO2 fixation of the 40/35 °C treatment was 33.7 g m-2 d-1 and it increased by about 50 % as temperature declined. The corresponding water use efficiency (WUE) decreased from 14 to 5 g(CO2) kg-1(H2O) for the lowest and highest temperature treatments, respectively. Three main factors affected WUE, PN, and E of Zea: the high temperature which reduced PN, vapor pressure deficit (VPD) that was directly related to E but did not affect PN, and quasi stem conductance (QC) that was directly related to PN but did not affect E. As a result, WUE of the 25/20 °C temperature treatment was almost three times larger than that of 40/35 °C temperature treatment. and J. Ben-Asher, A. Garcia y Garcia, G. Hoogenboom.