Deposition of solid particles in the stormwater sewers reduces the discharging capacity, causing inundation. A sediment invert trap (SIT) is an option that can be installed at the bottom of the stormwater sewer drain to intercept the flowing solid particles. In the present study performance of rectangular SIT were analyzed experimentally and computationally. Variation of particle trapping efficiency of rectangular SIT fitted at the bottom of the open channel flume has been studied under the interpretation of invert trap depth, flow depth, particle size, particle shape, and slot width. To predict the flow field and trap efficiency of a rectangular invert trap, 2D-VOF-DPM-CFD modelling has been carried out using ANSYS Fluent 2020 R1 software. For velocity field determination, the volume of fluid (VOF) model was used along with realizable k-є turbulence model. To predict particle trap efficiency, stochastic discrete phase model (DPM) was utilized. From experimental study and CFD modeling, it has been found that the particle trap efficiency of rectangular invert trap varied with change in the depth of invert trap, sediment size, shape factor, depth of flow and slot width. Consideration of particle shape in terms of shape factor in the modeling of solid-phase through DPM validated the CFD predicted results with those obtained experimentally with mean absolute percent error (MAPE) of 2.68%, 3.99% and 6.6% for sewer solid size ranges SS1, SS2, and SS3 respectively at all flow depths for both slot widths considered in this study.
Detailed data on the long-term performance of bioretention cells (BC) for stormwater management are sparse. This research aimed at setting up and testing an infrastructure that will provide the data on hydrologic and chemical performance of BC. Two identical experimental BC’s were built. The monitoring methodology monitoring was developed and tested during a first growing season with the first BC supplied with natural rainfall, while the second BC was used for ponding experiments. Key layer of the BCs, a biofilter, was composed of sand, compost and topsoil. Both BCs are equipped with sensors monitoring the components of water balance and the water potential of the biofilter. High levels of total suspended solids were detected in the outflow. The runoff coefficient for the entire period of the growing season was 0.72 in the first BC and 0.86 in the second BC, while the peak outflow reduction for individual rainfall episodes ranged between 75% to 95% for the first BC and 19% to 30% for the second BC. Saturated hydraulic conductivity of the biofilter in the first BC decreased by two orders of magnitudes after the first year of operation. Retention curves of the biofilter changed due to material consolidation.
Balance control is a critical task of daily life, the ability to maintain upright posture becomes of particular concern during aging when the sensory and motor system becomes deteriorated. Falls contribute to the most deaths caused by injury within the aged population, and the mortality rate following a fall is drastically elevated. Longitudinal and reliable assessment of balance control abilities is a critical point in the prediction of increased risk of falling in an elderly population. The primary aim of the study was to evaluate the efficiency of the Homebalance test in the identification of persons being at higher risk of falling. 135 subjects (82 women and 53 men) with geriatric syndrome have been recruited and the Homebalance and the Tinetti Balance test were performed. Results of both tests strongly correlated proving the good performance of the Homebalance test. Standing balance declines with increasing body mass index in both genders. Analysis of fluctuations of the center of pressure (COP) revealed higher frequency and magnitude in mediolateral direction COP movements when compared women to men. A strong negative correlation has been found between Tinetti static balance score and the total length of the COP trajectory during the examination on Homebalance (r = -0.6, p<0.001). Although both methods revealed good performance in detecting balance impairment, Homebalance test possesses higher precision due to the continuous nature of COP-derived parameters. In conclusion, our data proved that the Homebalance test is capable to identify persons with impaired balance control and thus are at higher risk of falling.
Vascular calcification (VC) is an independent risk factor for cardiovascular events and all-cause mortality with the absence of current treatment. This study aimed to investigate whether eIF2α phosphorylation inhibition could ameliorate VC. VC in rats was induced by administration of vitamin D3 (3×105 IU/kg, intramuscularly) plus nicotine (25 mg/kg, intragastrically). ISRIB (0.25 mg/kg·week), an inhibitor of eIF2α phosphorylation, ameliorated the elevation of calcium deposition and ALP activity in calcified rat aortas, accompanied by amelioration of increased SBP, PP, and PWV. The decreased protein levels of calponin and SM22α, and the increased levels of RUNX2 and BMP2 in calcified aorta were all rescued by ISRIB, while the increased levels of the GRP78, GRP94, and C/EBP homologous proteins in rats with VC were also attenuated. Moreover, ISRIB could prevent the elevation of eIF2α phosphorylation and ATF4, and partially inhibit PERK phosphorylation in the calcified aorta. These results suggested that an eIF2α phosphorylation inhibitor could ameliorate VC pathogenesis by blocking eIF2α/ATF4 signaling, which may provide a new target for VC prevention and treatment.
Two light treatments [ambient sunlight (L1) during the entire growth period and 40% shade (L2) from 40 d after sowing until 24 d after flowering] and two phosphate fertilizer treatments [no phosphate fertilizer application (P0) and a conventional phosphate fertilizer application (P1)] were used to determine how phosphate fertilizer regulates soybean [Glycine max (L.) Merr.] photosynthesis under shading. We showed that phosphorus significantly increased chlorophyll content and grain yield under shading. The light-saturated net photosynthetic rate, apparent quantum yield, maximum electron transport rate, and maximum Rubisco carboxylation rate in P1 under L2 significantly increased. Moreover, phosphate fertilizer significantly improved the electron transfer and PSII reaction center performance under shading. Therefore, phosphate fertilizer increases low light-utilization efficiency by improving PSII performance, promoting ribulose-1,5-bisphosphate regeneration, ensuring a source of carboxylate substrates, and coordinating the balance between photochemical reaction and Calvin cycle under shading.
Phosphene is the experience of light without natural visual stimulation. It can be induced by electrical stimulation of the retina, optic nerve or cortex. Induction of phosphenes can be potentially used in assistive devices for the blind. Analysis of phosphene might be beneficial for practical reasons such as adjustment of transcranial alternating current stimulation (tACS) frequency and intensity to eliminate phosphene perception (e.g., tACS studies using verum tACS group and sham group) or, on the contrary, to maximize perception of phosphenes in order to be more able to study their dynamics. In this study, subjective reports of 50 healthy subjects exposed to different intensities of retinal tACS at 4 different frequencies (6, 10, 20 and 40 Hz) were analyzed. The effectiveness of different tACS frequencies in inducing phosphenes was at least 92 %. Subject reported 41 different phosphene types; the most common were light flashes and light circles. Changing the intensity of stimulation often induced a change in phosphene attributes. Up to nine phosphene attributes changed when the tACS intensity was changed. Significant positive correlation was observed between number of a different phosphene types and tACS frequency. Based on these findings, it can be concluded that tACS is effective in eliciting phosphenes whose type and attributes change depending on the frequency and intensity of tACS. The presented results open new questions for future research.
The oxygen-evolving complex (OEC) of Zostera marina is prone to deactivation under visible light, which results in a formation of the long-lived radical P680+. The mechanism to prevent damage caused by P680+ remains unclear. In this study, following light exposure, the upregulation in ascorbate (AsA) content and the presence of PSII cyclic electron flow (PSII-CEF) provide evidence that AsA and PSII-CEF donate electrons to PSII. Furthermore, a factorial design experiment with different combinations of inhibition of AsA and PSII-CEF demonstrates that both inhibition treatments lead to decreases in maximal photochemical yield of PSII, increases in relative variable fluorescence at the K-step, as well as the net loss of PSII reaction center proteins and further degradation of OEC peripheral proteins. These results suggest that AsA and PSII-CEF play photoprotective roles by providing electrons to efficiently prevent damage to PSII from the highly oxidizing radical P680+ in Z. marina.
Elements not usually included in culture medium formulations, such as selenium (Se), may have beneficial effects on micropropagated plants. We evaluated the effects of Se on the physiological and anatomical responses of Alcantarea imperialis during in vitro culture. Plants were cultured in a medium containing a gradient of Se concentrations (0, 4, 8, 16, or 32 µM Se). After 56 d, the growth traits, chlorophyll a fluorescence, and root and leaf anatomy were analyzed. The fresh mass declined at the highest Se concentration. Higher Se concentrations induced bigger stomata, while the stomatal density decreased. Plants cultured with Se had improved PSII and PSI electron transport. This led to higher values of the total performance index. Thus, Se-induced plants showed a higher electron transport dynamics and energy conservation from water to PSI and developed anatomical traits that can favor tolerance to water deficit.
Alterations in photosynthetic performance of lutein-deficient mutant lut2 and wild type (wt) of Arabidopsis thaliana were followed after treatment with low temperature and high light for 6 d. The obtained results indicated lower electrolyte leakage, lower excitation pressure, and higher actual photochemical efficiency of PSII in lut2 plants exposed to combined stress compared to wt plants. This implies that lut2 is less susceptible to the applied stress conditions. The observed lower values of quantum efficiency of nonphotochemical quenching and energy-dependent component of nonphotochemical quenching in lut2 suggest that nonphotochemical quenching mechanism(s) localized within LHCII could not be involved in the acquisition of higher stress tolerance of lut2 and alternatives to nonphotochemical quenching mechanisms are involved for dissipation of excess absorbed light. We suggest that the observed enhanced capacity for cyclic electron flow and the higher oxidation state of P700 (P700+), which suggests PSI-dependent energy quenching in lut2 plants may serve as efficient photoprotective mechanisms, thus explaining the lower susceptibility of lut2 to the combined stress treatments.
This study aimed to determine the photosynthetic performance and differences in chlorophyll fluorescence (ChlF) parameters between Eulophia dentata and its companion species Bletilla formosana and Saccharum spontaneum when subjected to different photosynthetic photon flux density (PPFDs). Leaf surfaces were then illuminated with 50, 100 (low PPFDs), 300, 500, 800 (moderate PPFDs); 1,000; 1,500; and 2,000 (high PPFDs) μmol m-2.s-1, and the ChlF parameters were measured during the whole process. Increasing nonphotochemical quenching of ChlF and decreasing potential quantum efficiency of PSII, actual quantum efficiency of PSII, and quantum efficiency ratio of PSII in dark recovery from 0-60 min were observed in all leaves. A significant and negative relationship was detected between energy-dependent quenching (qE) and photoinhibition percent in three species under specific PPFD conditions, whereas a significant and positive relationship was detected between photoinhibitory quenching (qI) and photoinhibition percent. The qE and qI can be easily measured in the field and provide useful ecological indexes for E. dentata species restoration, habitat creation, and monitoring.