To investigate the effect of hydrogen sulfide (H2S) on myocardial injury in sepsis-induced myocardial dysfunction (SIMD), male C57BL/6 mice were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg, i.p.) to induce cardiac dysfunction without or with the H2S donor sodium hydrosulfide (NaHS) (50 µmol/kg, i.p.) administration 3 h after LPS injection. Six hours after the LPS injection, echocardiography, cardiac hematoxylin and eosin (HE) staining, myocardial damage and inflammatory biomarkers and Western blot results were analyzed. In mice, the administration of LPS decreased left ventricular ejection fraction (LVEF) by 30 % along with lowered H2S levels (35 % reduction). It was observed that cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels were all increased (by 0.22-fold, 2000-fold and 0.66-fold respectively). HE staining revealed structural damage and inflammatory cell infiltration in the myocardial tissue after LPS administration. Moreover, after 6 h of LPS treatment, toll-like receptor 4 (TLR4) and nod-like receptor protein 3 (NLRP3) expressions were up-regulated 2.7-fold and 1.6-fold respectively. When compared to the septic mice, NaHS enhanced ventricular function (by 0.19-fold), decreased cTnI, TNF-α, and IL-1β levels (by 11 %, 33 %, and 16 % respectively) and downregulated TLR4 and NLRP3 expressions (by 64 % and 31 % respectively). Furthermore, NaHS did not further improve cardiac function and inflammation in TLR4-/- mice or mice in which NLRP3 activation was inhibited by MCC950, after LPS injection. In conclusion, these findings imply that decreased endogenous H2S promotes the progression of SIMD, whereas exogenous H2S alleviates SIMD by inhibiting inflammation via the TLR4-NLRP3 pathway suppression.
The purpose of the present study was to define the indirect central effect of hydrogen sulfide (H2S) on baroreflex control of sympathetic outflow. Perfusing the isolated carotid sinus with sodium hydrosulfide (NaHS), a H2S donor, the effect of H2S was measured by recording changes of renal sympathetic nerve activity (RSNA) in anesthetized male rats. Perfusion of isolated carotid sinus with NaHS (25, 50, 100 μmol/l) dose and timedependently inhibited sympathetic outflow. Preconditioning of glibenclamide (20 μmol/l), a ATP-sensitive K+ channels (KATP) blocker, the above effect of NaHS was removed. With 1, 4-dihydro-2, 6-dimethyl-5-nitro-4-(2-[trifluoromethyl] phenyl) pyridine-3-carboxylic acid methyl ester (Bay K8644, 500 nmol/l) pretreatment, which is an agonist of L-calcium channels, the effect of NaHS was eliminated. Perfusion of cystathionine γ-lyase (CSE) inhibitor, DL-propargylglycine (PPG, 200 μmol/l), increased sympathetic outflow. The results show that exogenous H2S in the carotid sinus inhibits sympathetic outflow. The effect of H2S is attributed to opening KATP channels and closing the L-calcium channels., Qi Guo, Yuming Wu, Hongmei Xue, Lin Xiao, Shneg Jin, Ru Wang., and Obsahuje bibliografii
Vascular calcification (VC) is an independent risk factor for cardiovascular events and all-cause mortality with the absence of current treatment. This study aimed to investigate whether eIF2α phosphorylation inhibition could ameliorate VC. VC in rats was induced by administration of vitamin D3 (3×105 IU/kg, intramuscularly) plus nicotine (25 mg/kg, intragastrically). ISRIB (0.25 mg/kg·week), an inhibitor of eIF2α phosphorylation, ameliorated the elevation of calcium deposition and ALP activity in calcified rat aortas, accompanied by amelioration of increased SBP, PP, and PWV. The decreased protein levels of calponin and SM22α, and the increased levels of RUNX2 and BMP2 in calcified aorta were all rescued by ISRIB, while the increased levels of the GRP78, GRP94, and C/EBP homologous proteins in rats with VC were also attenuated. Moreover, ISRIB could prevent the elevation of eIF2α phosphorylation and ATF4, and partially inhibit PERK phosphorylation in the calcified aorta. These results suggested that an eIF2α phosphorylation inhibitor could ameliorate VC pathogenesis by blocking eIF2α/ATF4 signaling, which may provide a new target for VC prevention and treatment.