Hillslope hydrology in agricultural landscapes is complex due to a variety of hydropedological processes and field management possibilities. The aim was to test if there are any differences in soil properties and water regime along the hillslope and to compare vineyard rows (vine) with inter-rows (grass) area for those properties. The study determined that there are significant differences in the contents of soil particle fractions, pH, and humus content along the slope (P < 0.0001), with lower confidence level in bulk density (P < 0.05). Differences between row and inter-row space were significant for the pH, humus, and silt content, but for sand and clay content, and bulk density differences were not determined. The study determined differences in soil water content among five slope positions (P < 0.0001), and between row and inter-row vineyard space (all with P < 0.05). Where in the upper slope positions (e. g., P1) soil water content was higher than on lower slope positions. Higher soil water content was observed at higher slope positions, associated with clay content. However, it can be concluded that the retention of moisture on the slope is more influenced by local-scale soil properties (primarily soil texture) and variability of the crop (row/inter-row) than the position on the slope.
An open channel flume with a central 180-degree bend with a rigid bed is designed to obtain a better understanding of the complex flow pattern around a T-shaped spur dike located in a sharp bend. The 3-dimensional velocities are measured by using an acoustic Doppler velocimetry under clear-water conditions. This study's primary objective is to compare variations of the mean flow pattern along a 180-degree bend with a variety of T-shaped spur dike lengths. In order to do so, parameters such as streamlines, the maximum velocity distribution, and the secondary flow strength under the influence of three T-shaped spur dike lengths will be analyzed and then compared with the case where no spur dikes are implemented. The results show that with the spur dike placed at the bend apex, the mean secondary flow strength at that range increases by approximately 2.5 times. In addition, a 67% increase in the length of the wing and web of the spur dike leads to a 27% growth in the mean secondary flow strength along the bend.
Acute orofacial pain is associated with significant disability and has a detrimental impact on quality of life. Although various origins of the pain in trigeminal territory can be identified an odontogenic pathology is the most common cause of acute orofacial pain in patients. Due to complex pathophysiology drugs with multitarget action might provide beneficial effect in pain management. The aim of the present study was to experimentally examine the anti-nociceptive effects of tapentadol, an opioid agonist and a norepinephrine reuptake inhibitor (MOR/NRI), in our animal model of orofacial pain. We tested the effect of tapentadol at gradual doses of 1, 2 and 5 mg/kg during thermal and mechanical stimulation in the trigeminal area of adult rats. We observed that tapentadol exhibits antinociceptive effect at dosages of 2 mg/kg and 5 mg/kg and only in association with mechanical stimulation.
The potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is a major pest of potato, Solanum tuberosum L. (Solanales: Solanaceae), both in the field and storehouses. The rate of development and survival of P. operculella, reared on potato tubers cv. Spunta at eight constant temperatures (17.5, 20, 22.5, 25, 27.5, 30, 32.5 and 35°C), were studied in the laboratory. The duration of development of the immature stages was recorded. Adult longevity was also recorded under the same conditions. Developmental time decreased significantly with increase in temperature within the range 17.5-32.5°C. No development occurred at 35°C. Survival (%) from egg to adult was higher at temperatures within the range 17.5-27.5°C than at either 30 or 32.5°C. Linear and a non-linear (Logan I) models were fitted to our data in order to describe the developmental rate of the immature stages of P. operculella as a function of temperature and estimate the thermal constant (K) and critical temperatures (i.e., lower developmental threshold, optimum temperature for development, upper developmental threshold). Lower developmental threshold and optimum temperature for development ranged between 12.5-16.2 and 31.7-33.8°C, respectively. The estimated upper developmental threshold for total immature development was 35.0°C. Thermal constant for total development was 294.0 degree-days. Adult longevity was significantly shorter at high (30 and 32.5°C) than at low temperatures (17.5-27.5°C). Our results not only provide a broader insight into the thermal biology of P. operculella, but also can be used as an important tool in planning an effective pest control program both in the field and storehouses., Stefanos S. Andreadis, Christos G. Spanoudis, Georgia Zakka, Barbara Aslanidou, Sofia NoukariI, Matilda Savopoulou-Soultani., and Obsahuje bibliografii
The Asian long-horned beetle, Anoplophora glabripennis, is a serious destructive pest of forests throughout China as it attacks a wide range of host plants. The effect of host trees on the cold hardiness of A. glabripennis larvae could be the basis for predicting the performance of this forest pest on different common hosts.To evaluate the effect of different species of host plant on the cold hardiness of overwintering larvae of A. glabripennis, we measured the supercooling point (SCP), fresh mass, protein content and concentrations of low molecular weight substances in overwintering larvae collected from three different host species (i.e., Populus opera, Populus tomentosa and Salix matsudana). Mean SCPs and protein contents of larvae from these three hosts differed significantly. The SCPs and protein contents of the larvae collected from P. opera and P. tomentosa were significantly higher than those collected from S. matsudana. The concentrations of glycerol, glucose and trehalose in overwintering larvae collected from these host species also differed significantly, but there were no significant differences in the concentrations of sorbitol and inositol. The larvae that were collected from S. matsudana had the highest concentrations of glycerol and trehalose and those from P. opera the lowest contents of glycerol, whereas those from P. tomentosa had the lowest concentrations of trehalose but the highest concentrations of glucose. Because of the significant differences in the quantities of these biochemical substances in their bodies, the cold hardiness of overwintering larvae of A. glabripennis was significantly dependent on the tree they fed on. These effects on the cold hardiness of the overwintering larvae might affect the selection of a host tree and therefore the spread of this beetle. and Yuqian Feng, Reaxit Tursun, Zhichun Xu, Fang Ouyang, Shixiang Zong.
The aim of the study was to assess the possibility of using the empirical formulas to determine the roughness coefficient in gravel-bed streams, the bed slopes of which range from 0.006 to 0.047. Another aim was to determine the impact of taking into account the conditions of non-uniform flow on the application of these formulas and to develop the correlation relationships between the roughness coefficient and water surface slope and also between the roughness coefficient and friction slope in order to estimate the roughness coefficient n in gravel-bed streams. The studies were conducted in eight measuring sections of streams located in the Kraków-Częstochowa Upland, southern Poland. The roughness coefficient n0 for these sections was calculated from the transformed Bernoulli equation based on the results of surveys and hydrometric measurements. The values of n0 were compared with the calculation results obtained from fourteen empirical formulas presenting the roughness coefficient as a function of slope. The Lacey, Riggs, Bray and Sauer formulas were found to provide an approximate estimate of the n value, while the best roughness coefficient estimation results were obtained using the Riggs formula. It was also found that taking into account the non-uniform flow and using the friction slope in the formulas instead of the bed slope or water surface slope did not improve the estimated values of the roughness coefficient using the tested formulas. It was shown that the lack of differences in the RMSE and MAE error values calculated for the developed correlation equations between the roughness coefficient and the friction slope or with the water surface slope also indicate no influence of the assumed friction slope or water surface slope on the value of the estimated roughness coefficient.
The red flour beetle, Tribolium castaneum, is a pest of stored products. It is also regarded as a model species for studying development, genetics, biology, physiology and biochemistry. Recently, it has become a model for use in RNA interference experiments. 20-hydroxyecdysone (20E) is involved in insect metamorphosis and its role in organ development in T. castaneum are based on hormonal treatment in conjunction with RNAi. However, information on the biological, morphological and physiological effects of 20E on T. castaneum is still limited. This study reveals the responses of T. castaneum larvae to injections with various doses of 20E (100, 200, 300, 400 and 500 ng / insect). The results show that larvae injected with 20E reached the prepupal, pupal and adult stages earlier than the control group. Different degrees of morphological change were observed in nine traits, including the appearance of pupal prothetelic organs in the larvae. Moreover, an injection of a high dose of 20E reduced the body weights of the resulting insects at each stage, as well as the length and width of elytra. The enzymatic activity of α-amylase in the resulting adults also decreased significantly. This indicates that injection of 20E caused precocious metamorphosis in T. castaneum by inducing changes in morphology and α-amylase activity, and the optimal concentrations that induce such phenomena were in the range of 100-200 ng / insect. Further investigations are needed to examine the roles of 20E in the regulation of α-amylase in T. castaneum., Nujira Tatun, Phiraya Kumdi, Jatuporn Tungjitwitayakul, Sho Sakurai., and Obsahuje bibliografii
Mechanical circulatory support (MCS) with an implantable left ventricular assist device (LVAD) is an established therapeutic option for advanced heart failure. Most of the currently used LVADs generate a continuous stream of blood that decreases arterial pulse pressure. This study investigated whether a change of the pulse pressure during different pump speed settings would affect cerebral autoregulation and thereby affect cerebral blood flow (CBF). The study included 21 haemodynamically stable outpatients with a continuous-flow LVAD (HeartMate II, Abbott, USA) implanted a median of 6 months before the study (interquartile range 3 to 14 months). Arterial blood pressure (measured by finger plethysmography) was recorded simultaneously with CBF (measured by transcranial Doppler ultrasound) during baseline pump speed (8900 rpm [IQR 8800; 9200]) and during minimum and maximum tolerated pump speeds (8000 rpm [IQR 8000; 8200] and 9800 rpm [IQR 9800; 10 000]). An increase in LVAD pump speed by 800 rpm [IQR 800; 1000] from the baseline lead to a significant decrease in arterial pulse pressure and cerebral blood flow pulsatility (relative change −24 % and −32 %, both p < 0.01), but it did not affect mean arterial pressure and mean CBF velocity (relative change 1 % and −1.7 %, p=0.1 and 0.7). In stable patients with a continuous-flow LVAD, changes of pump speed settings within a clinically used range did not impair static cerebral autoregulation and cerebral blood flow.
This study presents the results of 32 laboratory experiments on local scour at a single pile and a 1 × 4 pile group for both uniform and non-uniform sediments under clear water conditions. The present study aims to evaluate the effects of different sediment beds made up of mixtures of sand and gravel (four-bed configurations) in d50 (1–3.5 mm) and gradation (1.4–3) ranges on scour depth for different flow discharges and flow depths. Further, the findings of the experiments are deployed to describe the effects of pile spacing and flow conditions on the local pier scour for both uniform and non-uniform bed granulometries. In addition, this study addresses the performance of some existing scourdepth predictors. Also, the corresponding results are suitable for validating the numerical models in local pier scour prediction importantly with non-uniform sediments. In summary, the results show that effects of sediment gradation dampen with increasing flow shallowness. Furthermore, the maximum scour depth at pile groups generally increases as pile spacing decreases for uniform sediments, whereas the mentioned trend was not observed for non-uniform sediments for the same flow and sediment conditions. Moreover, the experimental results revealed that bed sediment gradation is a controlling factor in the pile’s scour. Thus, the existing scour depth predictions could be highly improved by considering sediment gradation in the predictions. Finally, the conclusions drawn from this study provide crucial evidence for the protection of bridge foundations not only at the front pile but also at rear piles.
CO2 injection is a well-known Enhanced Oil Recovery (EOR) technique that has been used for years to improve oil extraction from carbonate rock and other oil reservoirs. Optimal functioning of CO2 injection requires a thorough understanding of how this method affects the petrophysical properties of the rocks. We evaluated pore-scale changes in these properties, notably porosity and absolute permeability, following injection of CO2-saturated water in two coquina outcrop samples from the Morro do Chaves Formation in Brazil. The coquinas are close analogues of Presalt oil reservoirs off the coast of southern Brazil. The effects of carbonated water injection were evaluated using a series of experimental and numerical steps before and after coreflooding: cleaning, basic petrophysics, microtomography (microCT) imaging, nuclear magnetic resonance (NMR) analyses, and pore network modeling (PNM). Our study was motivated by an earlier experiment which did not show the development of a wormhole in the center of the sample, with a concomitant increase in permeability of the coquina as often noted in the literature. We instead observed a substantial decrease in the absolute permeability (between 71 and 77%), but with little effect on the porosity and no wormhole formation. While all tests were carried out on both samples, here we present a comprehensive analysis for one of the samples to illustrate changes at the pore network level. Different techniques were used for the pore-scale analyses, including pore network modeling using PoreStudio, and software developed by the authors to enable a statistical analysis of the pore network. Results provided much insight in how injected carbonated water affects the pore network of carbonate rocks.