A new lecanicephalidean genus is erected for cestodes previously recognised as "New Genus 12" (Polypocephalidae) in a phylogenetic analysis of the interrelationship of members of this order. Examination of the cestode fauna of the mangrove whipray, Urogymnus granulatus (Macleay) (Myliobatiformes: Dasyatidae) from the Solomon Islands and northern Australia revealed the existence of specimens representing two new species, consistent in morphology with "New Genus 12." Corollapex gen. n. is unique among the 24 valid lecanicephalidean genera in its possession of an apical organ in the form of an external retractable central disk surrounded by eight concave muscular, membrane-bound pads and an internal heterogeneous glandular component. The two new species described herein, Corollapex cairae sp. n. (type species) and Corollapex tingoi sp. n., differ from one another in overall size and number of mature and immature proglottids, and are noted to demonstrate a differential distribution between mature and juvenile host individuals. Additional species diversity in the new genus, beyond C. cairae sp. n., C. tingoi sp. n., and "New Genus 12 n. sp. 1" of Jensen et al. (2016) is suggested. Corollapex gen. n. appears to be restricted to dasyatid hosts in the Indo-West Pacific region., Kaylee S. Herzog, Kirsten Jensen., and Obsahuje bibliografii
This article summarizes the importance of the exact morphology of human uterine/fallopian tube epithelium at the scanning electron microscopy (SEM) level for the clinical outcome even nowadays. Visual referential micrographs from SEM reflect two ways to view human epithelial cell lining surfaces: the surface epithelial uterine tube from surgical tissue biopsy and human fallopian tube epithelial cells (HFTEC) culture monolayer surface. One colorized image visualizes ciliated cells, distinguishes them from non-ciliated cells, and provides an educational benefit. A detailed description of the ultrastructure in referential and pathologic human uterine tube epithelium is important in defining the morphological basis of high-grade carcinomas, in the mechanism of pathophysiology, and in discussing options for its prevention. Cell cultures of human fallopian tube epithelial cells offer new approaches in simulating the mechanisms of cancer genesis or may help to elucidate the genetic basis of several diagnoses. New technical approaches in SEM provide higher resolution and detailed surface images. The SEM modality is still one of the current options in diagnostics and may be useful for advancing human reproductive organ cancer research.
A comparative study of the scoleces of monozoic tapeworms (Cestoda: Caryophyllidea), parasites of catostomid and cyprinid fishes (Teleostei: Cypriniformes) in the Nearctic Region, was carried out using light and scanning electron microscopy. Scoleces of 22 genera of North American caryophyllideans were characterised and their importance for taxonomy, classification and phylogenetic studies was critically reviewed. Nearctic genera exhibit a much higher variation in the shape and form of scoleces compared with taxa in other biogeographical regions. The following basic scolex types can be recognised in Nearctic caryophyllideans: monobothriate (Promonobothrium Mackiewicz, 1968), loculotruncate (Promonobothrium, Dieffluvium Williams, 1978), bothrioloculodiscate (Archigetes Leuckart, 1878, Janiszewskella Mackiewicz et Deutsch, 1976, Penarchigetes Mackiewicz, 1969, Pseudoglaridacris Oros, Uhrovič et Scholz, 2018), fixomegabothriate (Capingens Hunter, 1927), bulbate and bulboacuminate (Atractolytocestus Anthony, 1958), cuneiloculate (Hypocaryophyllaeus Hunter, 1927, Rowardleus Mackiewicz et Deutsch, 1976, Spartoides Hunter, 1929), biacetabulate, bulboloculate, bothrioloculodiscate (Biacetabulum Hunter, 1927), tholate (Hunterella Mackiewicz et McCrae, 1962), cuneifimbriate (Khawia Hsü, 1935), cuneiform (Calentinella Mackiewicz, 1974, Caryophyllaeides Nybelin, 1922, Edlintonia Mackiewicz, 1970), hastate (Pseudolytocestus Hunter, 1929), loculotholate (Bialovarium Fischthal, 1953, Pliovitellaria Fischthal, 1951), and cuneiformoloculate (Glaridacris Cooper, 1920, Isoglaridacris Mackiewicz, 1965). The same type of scolex may be shared by species of different genera or families and species of the same genus can have a scolex of conspicuously different morphology, e.g. in Promonobothrium. Scolex morphology may be therefore of limited use in generic designation.
A comparative study of the scoleces of monozoic tapeworms (Cestoda: Caryophyllidea), parasites of catostomid and cyprinid fishes (Teleostei: Cypriniformes) in the Nearctic Region, was carried out using light and scanning electron microscopy. Scoleces of 22 genera of North American caryophyllideans were characterised and their importance for taxonomy, classification and phylogenetic studies was critically reviewed. Nearctic genera exhibit a much higher variation in the shape and form of scoleces compared with taxa in other biogeographical regions. The following basic scolex types can be recognised in Nearctic caryophyllideans: monobothriate (Promonobothrium Mackiewicz, 1968), loculotruncate (Promonobothrium, Dieffluvium Williams, 1978), bothrioloculodiscate (Archigetes Leuckart, 1878, Janiszewskella Mackiewicz et Deutsch, 1976, Penarchigetes Mackiewicz, 1969, Pseudoglaridacris Oros, Uhrovič et Scholz, 2018), fixomegabothriate (Capingens Hunter, 1927), bulbate and bulboacuminate (Atractolytocestus Anthony, 1958), cuneiloculate (Hypocaryophyllaeus Hunter, 1927, Rowardleus Mackiewicz et Deutsch, 1976, Spartoides Hunter, 1929), biacetabulate, bulboloculate, bothrioloculodiscate (Biacetabulum Hunter, 1927), tholate (Hunterella Mackiewicz et McCrae, 1962), cuneifimbriate (Khawia Hsü, 1935), cuneiform (Calentinella Mackiewicz, 1974, Caryophyllaeides Nybelin, 1922, Edlintonia Mackiewicz, 1970), hastate (Pseudolytocestus Hunter, 1929), loculotholate (Bialovarium Fischthal, 1953, Pliovitellaria Fischthal, 1951), and cuneiformoloculate (Glaridacris Cooper, 1920, Isoglaridacris Mackiewicz, 1965). The same type of scolex may be shared by species of different genera or families and species of the same genus can have a scolex of conspicuously different morphology, e.g. in Promonobothrium. Scolex morphology may be therefore of limited use in generic designation., Mikuláš Oros, Dalibor Uhrovič, Anindo Choudhury, John S. Mackiewicz and Tomáš Scholz., and Obsahuje bibliografii
Using scanning and transmission electron microscopy, ultrastructure of the anterior organ and posterior funnel-shaped canal of Gyrocotyle urna Wagener, 1852 (Cestoda: Gyrocotylidea) from ratfish, Chimaera monstrosa (Holocephali), was studied for the first time. The proper anterior organ is localised at a short distance (about 170 µm) from an apical pore surrounded by a receptor field, whereas its distal end is marked by a muscular sphincter. The tegumental surface of this organ is covered with short filitriches of irregular length; large area of muscle layers traverse beneath the tegumental layer. The funnel-shaped canal of G. urna (2.5-3.0 mm long) is a specialised, muscular part of the posterior attachment organ; it opens on the rounded elevation on the dorsal body surface. The tegumental layer bears conical sclerite-like structures (up to 1.5 µm long). It produces electron-dense bodies that are transported into a canal lumen and surrounded thick muscle area mixed with numerous nerve fibres. The present ultrastructural study of G. urna indicates that gyrocotylideans share some ultrastructural characters of the anterior organ with spathebothriidean cestodes with a single anterior attachment sucker-like organ. In contrast, the unique posterior rosette attachment organ with funnel-shaped canal of the Gyrocotylidea resembles the haptor of polyopisthocotylean monogeneans in its position at the posterior end of the body and presumed origin. The above-mentioned features add more clarity to support the basal position of the Gyrocotylidea Poche, 1926 among cestodes. In addition, they also indicate a possible relationship of gyrocotylidean ancestors with monogeneans., Larisa G. Poddubnaya, Roman Kuchta, Glenn A. Bristow, Tomáš Scholz., and Obsahuje bibliografii