Grillotia epinepheli sp.n. is described on the basis of plerocerci found in the body cavity and peritoneum of the teleost, Epinephelus guaza (L.) (Perciformes: Serranidae) caught off Sardinia, Italy. The species is distinguished from congeners by its tentacular armament, particularly in the basal armature. The metabasal region is armed with rows of 8-9 principal hooks beginning on the internal face; hooks 9 (9’), if present, much smaller than hooks 8 (8’) and similar to minute hooks on the external face. There are three intercalary rows consisting of 3, 2 and 4 hooks each. The external face is armed with a longitudinal band of minute hooks arranged in about 4 files. Basal armature well developed and composed of 7-8 rows of falciform and spiniform hooks.
The western part of the Bohemian Massif (Vogtland/West-Bohemia region at the Czech-German border) is characterized by relatively frequent intraplate earthquake swarms and by other manifestations of current geodynamic activity, such as mofettes, mineral and thermal springs. In this study we analyze variations of groundwater level in four hydrological wells in the region during the years 2005-2010. Monitoring during the previous time interval of 2000-2004 is also mentioned and used for comparison. Two of the wells are located in the epicentral region of Nový Kostel, and the other wells are more distant. The time interval includes the 2008 earthquake swarm when all the wells displayed a noticeable drop in the water level. This effect was observed up to epicentral distances of nearly 30 km, which exceeds the distances of hydrological changes observed during previous earthquake swarms. Moreover, it seems that a small rise in the water level preceded the intervals of increased seismic activity, which could represent a certain precursory phenomenon. On the other hand, the hydrological changes in the Nový Kostel area were relatively small, indicating that this epicentral area is not hydrologically linked with the seismically active fault at depth. Consequently, more suitable localities for hydrological monitoring should be sought in a broader vicinity of Nový Kostel., Renata Gaždová, Oldřich Novotný, Jiří Málek, Jan Valenta, Milan Brož and Petr Kolínský., and Obsahuje bibliografii
Guadua amplexifolia and Guadua angustifolia are the most promising timber substitutes amongst American bamboos due to their outstanding dimensions and structural properties. Despite the commercial potential of these species, there are few studies on the survival and adaptability of juveniles in plantations. The present study dealt with survival, growth, and ecophysiological response of juvenile clonal plants of these species, cultivated in abandoned pastures in Mérida, Venezuela. Survivorship, growth (height and culm diameter), and ecophysiological parameters were monitored the first year during wet and dry seasons. Survival rates were high in both species (95% in G. amplexifolia and 89% in G. angustifolia). Midday leaf water potentials decreased in both species during dry months (-1.28 to-2.72 MPa in G. amplexifolia and-1.67 to-2.37 MPa in G. angustifolia, respectively). Net photosynthetic rates measured during wet [16.57 ± 1.40 and 13.68 ± 2.40 μmol(CO2) m-2 s-1, respectively] and dry seasons [12.19 ± 2.82 and 8.12 ± 1.81 μmol(CO2) m-2 s-1, respectively], demonstrated that G. amplexifolia maintained consistently higher photosynthetic rates compared to G. angustifolia, which could explain the higher growth rates of the former. Similar trends were observed for stomatal conductance, transpiration, water-use efficiency, electron transport rate, and photochemical quenching of PSII. G. angustifolia maintained higher nonphotochemical quenching as well as a higher consumption of electrons per molecule of CO2 fixed, indicating a lower photosynthetic efficiency. The maximal photochemical efficiency of PSII (0.73-0.76) suggested that neither of these species suffered from photoinhibition, despite persistently high radiation and air temperatures at the study site., F. Ely, O. Araque, R. Jaimez., and Obsahuje bibliografii
Shoots of damaged Quercus dalechampii Ten. saplings were shorter and their growth lagged behind by more than one week compared to the control shoots. Photosynthetic activity in leaves of the damaged trees was significantly lowered. Yet the leaf dark respiration rate was higher in damaged saplings. Changes of both the growth and leaf photosynthetic activities may also be ušed as a sensitive diagnostic parameter in ascertaining the negative effects of abiotic and/or biotic factors of the environment.
In this study, we questioned whether ground-level ozone (O3) induces hormesis in Japanese larch (Larix kaempferi) and its hybrid F1 (L. gmelinii var. japonica × L. kaempferi). In order to answer the question, we exposed seedlings of both taxa to four O3 treatments [ranging from ≈10 to 60 nmol(O3) mol-1] in open-top chambers for two consecutive growing seasons. We found a hormetic response in maximum photosynthetic rate (PNmax) at 1700 μmol(CO2) mol-1 and maximum rates of carboxylation (Vcmax) and electron transport (Jmax) in both larches. Stimulation of PNmax, Vcmax, and Jmax did not lead to suppressed plant productivity in Japanese larch, which followed a stress-tolerant strategy, but it did lead to suppressed plant productivity in hybrid larch which followed a competitive strategy. These findings are the first to suggest that stimulation of physiological functions by low O3 exposures may have negative consequences for larch reproduction., T. Sugai, D.-G. Kam, E. Agathokleous, M. Watanabe, K. Kita, T. Koike., and Obsahuje bibliografii