Guadua amplexifolia and Guadua angustifolia are the most promising timber substitutes amongst American bamboos due to their outstanding dimensions and structural properties. Despite the commercial potential of these species, there are few studies on the survival and adaptability of juveniles in plantations. The present study dealt with survival, growth, and ecophysiological response of juvenile clonal plants of these species, cultivated in abandoned pastures in Mérida, Venezuela. Survivorship, growth (height and culm diameter), and ecophysiological parameters were monitored the first year during wet and dry seasons. Survival rates were high in both species (95% in G. amplexifolia and 89% in G. angustifolia). Midday leaf water potentials decreased in both species during dry months (-1.28 to-2.72 MPa in G. amplexifolia and-1.67 to-2.37 MPa in G. angustifolia, respectively). Net photosynthetic rates measured during wet [16.57 ± 1.40 and 13.68 ± 2.40 μmol(CO2) m-2 s-1, respectively] and dry seasons [12.19 ± 2.82 and 8.12 ± 1.81 μmol(CO2) m-2 s-1, respectively], demonstrated that G. amplexifolia maintained consistently higher photosynthetic rates compared to G. angustifolia, which could explain the higher growth rates of the former. Similar trends were observed for stomatal conductance, transpiration, water-use efficiency, electron transport rate, and photochemical quenching of PSII. G. angustifolia maintained higher nonphotochemical quenching as well as a higher consumption of electrons per molecule of CO2 fixed, indicating a lower photosynthetic efficiency. The maximal photochemical efficiency of PSII (0.73-0.76) suggested that neither of these species suffered from photoinhibition, despite persistently high radiation and air temperatures at the study site., F. Ely, O. Araque, R. Jaimez., and Obsahuje bibliografii
Third instar larvae of the genus Acroceratitis Hendel from North Thailand are described for the first time. They belong to A. ceratitina (Bezzi), A. distincta (Zia), A. histrionica (de Meijere), A. incompleta Hardy, and A. septemmaculata Hardy. Short descriptions of eggs, empty egg shells, and puparia are also presented. Acroceratitis larvae infest shoots of bamboo (Poaceae). Larval host plants of the studied species are Bambusa polymorpha Munro, Cephalostachyum pergracile Munro, Dendrocalamus hamiltoni Nees and Arnott ex Munro, D. strictus (Roxbourgh), Dendrocalamus sp. (unidentified) and Pseudoxytenanthera albociliata (Munro). The morphological characters of Acroceratitis larvae are compared with those of other Gastrozonini described so far. A key to Acroceratitis larvae is provided. Acroceratitis ceratitina, A. incompleta and A. septemmaculata are morphologically similar and clearly differentiated from A. distincta and A. histrionica by the lack of additional papillar sensilla on the labial lobe, the arrangement of the spinules on the creeping welts and other characters. The morphological differences between the two groups coincide with the type of substrate utilized by their larvae: A. ceratitina, A. incompleta and A. septemmaculata larvae feed in young and soft internode walls, while A. distincta and A. histrionica utilize harder bamboo tissue of already elongated bamboo shoot internodes. Acroceratitis histrionica larvae are special within the Gastrozonini, because they develop exclusively in cavities formed by the internode surface and the protecting culm sheath. Factors influencing spatial utilization of larval resources, preference for upright shoots as breeding substrate, larval behavior, types of bamboo damage caused by different species and attraction to sweat and urine in the adults are discussed., Alexander Schneider, Damir Kovac, Gary J. Steck, Amnon Freidberg., and Obsahuje bibliografii