The widespread Mediterranean Pinus pinea showed exceptionally low genetic diversity and low differentiation between traits in the adult phase. We explored the adaptation potential of seedlings from four main Iberian provenances during their regeneration phase. We assessed the variability of shoot growth, allometry, physiological traits, and phenotypic plasticity to the interactive effect of light and water environments during 8-month moderate water-stress cycle and after one-week heat wave. The effect of shade and drought was mainly orthogonal whatever the provenance. The inland La Mancha provenance showed higher shoot growth and biomass compared to the southern coastal Depresión-del-Guadalquivir provenance. Following the heat wave, La Mancha presented higher net photosynthetic rates, a lower decrease in maximal quantum efficiency of PSII, and a higher accumulated relative height growth, thus, showing an adaptive advantage. The observed differences corroborated the ecological grouping of the provenances along latitudinal and inland-coastal gradients. We confirmed the high adaptive plasticity of Pinus pinea to the unpredictable Mediterranean environment., M. Pardos, R. Calama., and Obsahuje bibliografii
Morphological and ultrastructural changes, the chlorophyll (Chl) content and Chl a fluorescence induction were studied in primary leaves of runner beán plants (Phaseolus coccineus L. cv. Pi?kny Jaš) grown in Knop solution and treated with excess Cu [20 g(CuS04 x 5 H2O) m"^] at difíerent growth stages. The plants were exposed to the metal for 12 d. Cu added to the nutrient solution at the beginning growth stage induced significant leaf area reduction (31 %) as well as increase of Chl accumulation (148 %) and leaf density (122 %). No ultrastructural changes of chloroplasts were seen. Application of Cu at the advanced growth stage caused relatively smáli changes except local disturbances in stroma lamellae and leaf reduction to 70 % of control. Significant disorganization of chloroplast ultrastructure, smáli leaf area reduction (80 %) but specific leaf area increase (163 %) and leaf density decrease (67 %) were seen only in the primary leaves of plants treated with Cu at the finál stage of growth. These changes, similar to senescence response, were accompanied by Fy/Fo ratio decrease to 67 % in comparison with control.
This study aimed to compare the effects of three different resistance exercise models on the quadriceps muscle crosssectional area, as well as on mTOR phosphorylation and other pivotal molecules involved in the upstream regulation of mTOR. Twenty-four male Wistar rats were divided into untrained (control), endurance resistance training, strength resistance training, and hypertrophy resistance training (HRT) groups (n=6). After 12 weeks of training, the red portion of the quadriceps was removed for histological and Western blot analyses. The results showed that the quadriceps weight and cross-sectional areas in the exercised groups were higher than those of the untrained rats. However, the HRT group presented better results than the other two experimental groups. This same pattern was observed for mTOR phosphorylation and for the most pivotal molecules involved in the upstream control of mTOR (increase of PKB, 14-3-3, ERK, p38 MAPK, and 4E-BP1 phosphorylation, and reduction of tuberin, sestrin 2, REDD1, and phospho AMPK). In summary, our study showed that HRT leads to high levels of mTOR phosphorylation as well as of other proteins involved in the upstream regulation of mTOR., T. F. Luciano, S. O. Marques, B. L. Pieri, D. R. de Souza, L. V. Araújo, R. T. Nesi, D. L. Scheffer, V. H. Comin, R. A. Pinho, A. P. Muller, C. T. de Souza., and Obsahuje bibliografii
Soybean [Glycine mctx (L.) Merr. cv. Jack] was grown in the field in rain-prolected plots to study effects of drought and atmospheric CO2 enrichnient on leaf gas exchange. Midday depressions in leaf photosynthetic CO2 exchange rates were found in drought-sfressed plants and the diumal changes were inostly stoinatal- regulated, although accumulated drought stress eventually resulted in some non- stomatal limitations. However, seasonal changes in were mostly limited by non- stomatal factors. Water use efficiency was always higher for drought stiessed plants and depended on the severity of stress and associated stomatal or nonstoinatal limitations. At enriched atmospheric CO2 levels, stomatal limitations to Pyj under drought stress were less important than at ambient atmospheric CO2 levels. Morning and aftemoon leaf starch levels were enhanced in both irrigated and nonirrigated plants in enriched CO2. Aftemoon starch levels were higher in stiessed leaves than in non-stressed leaves at normál CO2 levels.
Effects of electrical conductivity (EC) and substrate water content on photosynthetic response to irradiance were examined to understand the constraints in photosynthesis caused by these stresses. Tomato plants were grown under high (4.5 mS cm'1) or low (2.3 mS cm'1) EC and high (95 %) or low (55 % of capillary capacity) soil water content. Photosynthetic photon flux (PPF) was changed (I) from low to high and then in reverse from high to low, and (2) starting from high to low and then reversing from low to high. In both cases, photosynthetic rates (PN) at most levels of PPF were higher during the 2nd cycle than during the first one. The extent of this hysteresis was larger for high EC-treated and/or water-stressed plants. In addition, /’N was inhibited under veiy high PPF (1800 pmol nr2 s'1) in high EC and/or water-stressed plants (stress-induced photosynthetic depression under high PPF). After gradual declining for about 40 min under high PPF, /'N started to recover. When recovered to some extent, it went down again, showing oscillation cycles. Oscillation was clearly observed for the treatment of high EC combined with high soil water content, but not for the control. Thus the abnormal photosynthetic responses to irradiance, such as hysteresis, photosynthetic depression under high PPF and oscillations may be induced or promoted by some constraints in substrate water availability, which cause abnormal stomatal response and inactivity of mesophyll photosynthesis.
The responses of photosynthesis and growth to increasing CO2 concentration ([CO2]) were investigated in Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis, which are endemic at the Qinghai-Tibet Plateau and phylogenetically related, but distributed parapatrically in divergent regions. Seedlings of the two species were grown at ambient [AC; 360 μmol(CO2) mol-1] and elevated [EC; 720 μmol(CO2) mol-1] [CO2] in growth chambers. The responses to EC were significantly different between the two species. EC induced an increase in photosynthesis, stomatal conductance, intrinsic water-use efficiency, apparent quantum efficiency, total dry mass, and a decrease in photorespiration rate, maximum carboxylation rate of Rubisco, and maximum electron transport rate in H. gyantsensis compared to those in H. rhamnoides subsp. yunnanensis. Moreover, a significant increase in leaf nitrogen content and a decrease in root/shoot ratio was also observed in H. gyantsensis. H. gyantsensis showed a significantly higher specific leaf area than that of H. rhamnoides through treatments. Relative to H. rhamnoides subsp. yunnanensis, H. gyantsensis showed a greater potential to increase photosynthesis and growth to cope with the increasing [CO2] and it might expand its distribution range in the future., F. Ma, T. T. Xu, M. F. Ji, C. M. Zhao., and Obsahuje seznam literatury
We studied the psychophysiology of soluble intercellular adhesion molecule-1 (sICAM-1) in 25 apparently healthy middle-aged men who underwent an acute psychosocial stressor three times with one week apart. Measures of the biological stress response were obtained at week one and three. The magnitude of the sICAM-1 stress response showed no habituation between individual visits. At week one, cognitive stress appraisal independently predicted integrated sICAM-1 area under the curve (AUC) between rest, immediately post-stress, and 45 min and 105 min post-stress (β=0.67, p=0.012, ΔR2=0.41). Diastolic blood pressure AUC (β=-0.45, p=0.048, ΔR2=0.21) and heart rate AUC (β=0.44, p=0.055, ΔR2=0.21) were independent predictors of sICAM-1 AUC at week three. Adjustment for hemoconcentration yielded a decrease in sICAM-1 levels from rest to post-stress (p<0.001). Stress responsiveness of plasma sICAM-1 was predicted by stress perception and hemodynamic reactivity and affected by stress-hemoconcentration but unrelated to cortisol reactivity and not readily adapting to repeated stress., R. von Känel, D. Preckel, B. M. Kudielka, J. E. Fischer., and Obsahuje bibliografii a bibliografické odkazy
We present the current state of complex circulatory dynamics model development based on Guyt on’s famous diagram. The aim is to provide an open-source model that will allow the simulation of a number of pathological conditions on a virtual patient including cardiac, respiratory, and kidney failure. The model will also simulate the therapeutic influence of various drugs, infusions of electrolytes, blood transfusion, etc. As a current result of implementation, we describe a co re model of human physiology targeting the systemic circulation, arterial pressure and body fluid regulation, including short- and long-term regulations. The model can be used for educational purposes and general reflection on physiological regulation in path ogenesis of various diseases., J. Kofránek, J. Rusz., and Obsahuje bibliografii
The results of geodetic GNSS measurements on the EYPA station (bult by INSU CNRS from France) in Corinth Gulf in Greece are analyzed. Data is analyzed in the time interval before and after the earthquakes, which occured in January 2010. Results confirm vertical and horizontal co-seismic shifts of EYPA station of the order of 4 cm and 1 cm., Jan Kostelecký and Jan Douša., and Obsahuje bibliografické odkazy