During the last thirty years since the discovery of endothelin-1, the therapeutic strategy that has evolved in the clinic, mainly in the treatment of pulmonary arterial hypertension, is to block the action of the peptide either at the ETA subtype or both receptors using orally active small molecule antagonists. Recently, there has been a rapid expansion in research targeting ET receptors using chemical entities other than small molecules, particularly monoclonal antibody antagonists and selective peptide agonists and antagonists. While usually sacrificing oral bio-availability, these compounds have other therapeutic advantages with the potential to considerably expand drug targets in the endothelin pathway and extend treatment to other pathophysiological conditions. Where the small molecule approach has been retained, a novel strategy to combine two vasoconstrictor targets, the angiotensin AT1 receptor as well as the ETA receptor in the dual antagonist sparsentan has been developed. A second emerging strategy is to combine drugs that have two different targets, the ETA antagonist ambrisentan with the phosphodiesterase inhibitor tadalafil, to improve the treatment of pulmonary arterial hypertension. The solving of the crystal structure of the ETB receptor has the potential to identify allosteric binding sites for novel ligands. A further key advance is the experimental validation of a single nucleotide polymorphism that has genome wide significance in five vascular diseases and that significantly increases the amount of big endothelin-1 precursor in the plasma. This observation provides a rationale for testing this single nucleotide polymorphism to stratify patients for allocation to treatment with endothelin agents and highlights the potential to use personalized precision medicine in the endothelin field., A. P. Davenport, R. E. Kuc, C. Southan, J. J. Maguire., and Seznam literatury
Bone metabolism is regulated by interaction between two skeletal cells – osteoclasts and osteoblasts. Function of these cells is controlled by a number of humoral factors, including neurohormones, which ensure equilibrium between bone resorption and bone formation. Influence of neurohormones on bone metabolism is often bimodal and depends on the tissue, in which the hormone is expressed. While hypothalamic beta-1 and beta-2-adrenergic systems stimulate bone formation, beta-2 receptors in bone tissue activate osteoclatogenesis and increases bone resorption. Chronic stimulation of peripheral beta-2 receptors is known to quicken bone loss and alter the mechanical quality of the skeleton. This is supported by the observation of a low incidence of hip fractures in patients treated with betablockers. A bimodal osteo-tropic effect has also been observed with serotonin. While serotonin synthetized in brain has osteo-anabolic effects, serotonin released from the duodenum inhibits osteoblast activity and decreases bone formation. On the other hand, both cannabinoid systems (CB1 receptors in the brain and CB2 in bone tissue) are unambiguously osteoprotective, especially with regard to the aging skeleton. Positive (protective) effects on bone have also been shown by some hypophyseal hormones, such as thyrotropin (which inhibits bone resorption) and adrenocorticotropic hormone and oxytocin, both of which stimulate bone formation. Low oxytocin levels have been shown to potentiate bone loss induced by hypoestrinism in postmenopausal women, as well as in girls with mental anorexia. In addition to reviewing neurohormones with anabolic effects, this article also reviews neurohormones with unambiguously catabolic effects on the skeleton, such as neuropeptide Y and neuromedin U. An important aim of research in this field is the synthesis of new molecules that can stimulate osteo-anabolic or inhibiting osteo-catabolic processes., I. Žofková, P. Matucha., and Obsahuje bibliografii
In this review the authors outline traditional antiresorptive pharmaceuticals, such as bisphosphonates, monoclonal antibodies against RANKL, SERMs, as well as a drug with an anabolic effect on the skeleton, parathormone. However, there is also a focus on non-traditional strategies used in therapy for osteolytic diseases. The newest antiosteoporotic pharmaceuticals increase osteoblast differentiation via BMP signaling (harmine), or stimulate osteogenic differentiation of mesenchymal stem cells through Wnt/β-catenin (icarrin, isoflavonoid caviunin, or sulfasalazine). A certain promise in the treatment of osteoporosis is shown by molecules targeting non-coding microRNAs (which are critical for osteoclastogenesis) or those stimulating osteoblast activity via epigenetic mechanisms. Vitamin D metabolites have specific antiosteoporotic potencies, modulating the skeleton not only via mineralization, but markedly also through the direct effects on the bone microstructure., I. Zofkova, J. Blahos., and Obsahuje bibliografii
The reactions of human organism to changes of internal or external environment termed as stress response have been at the center of interest during recent decades. Several theories were designed to describe the regulatory mechanisms which maintain the stability of vital physiological functions under conditions of threat or other environmental challenges. However, most of the models of stress reactivity were focused on specific aspects of the regulatory outcomes - physiological (e.g. neuroendocrine), psychological or behavioral regulation. Recently, a novel complex theory based on evolutionary and developmental biology has been introduced. The Adaptive Calibration Model of stress response employs a broad range of the findings from previous theories of stress and analyzes the responsivity to stress with respect to interindividual differences as a consequence of conditional adaptation - the ability to modify developmental trajectory to match the conditions of the social and physical environment. This review summarizes the contributions of the most important models in the field of stress response and emphasizes the importance of complex analysis of the psycho-physiological mechanisms. Moreover, it outlines the implications for nonpharmacological treatment of stress-related disorders with the application of biofeedback training as a promising tool based on voluntary modification of neurophysiological functions., I. Tonhajzerova, M. Mestanik., and Obsahuje bibliografii
Maintenance of norepinephrine (NE)-induced contraction is dependent on Ca2+ influx through L-type voltage-dependent Ca2+ channels (VDCC), which is opposed by nitric oxide. Adrenergic receptors are coupled with different G proteins, including inhibitory G proteins (Gi) that can be inactivated by pertussis toxin (PTX). Our study was aimed to investigate the effects of endothelium removal, PTX pretreatment and acute VDCC blockade by nifedipine on the contractions of femoral arteries stimulated by norepinephrine. We used 12-week-old male WKY, half of the rats being injected with PTX (10 μg/kg i.v., 48 h before the experiment), which considerably reduced their blood pressure (BP). Contractions of isolated arteries were measured using Mulvany-Halpern myograph. NE dose-response curves determined in femoral arteries from PTX-treated WKY rats were shifted to the right compared to those from control WKY. On the contrary, removal of endothelium augmented NE dose-response curves shifting them to the left. Acute VDCC blockade by nifedipine (10-7 M) abolished all differences in NE dose-response curves which were dependent on the presence of either intact endothelium or functional Gi proteins because all NE dose-response curves were identical to the curve seen in vessels with intact endothelium from PTX-treated animals. We can conclude that BP reduction after PTX injection is accompanied by the attenuation of NE-induced contraction of femoral arteries irrespective of endothelium presence. Moreover, our data indicate that both vasodilator action of endothelium and Gi-dependent vasoconstrictor effect of norepinephrine operate via the control of Ca2+ influx through VDCC., S. Líšková, J. Kuneš, J. Zicha., and Obsahuje bibliografii a bibliografické odkazy
This study investigated whether endothelin (ET)-1-induced increase in myocardial distensibility is preserved in heart failure (HF) and whether it is modulated by nitric oxide (NO) and prostaglandins. New Zealand white rabbits were treated with doxorubicin (1 mg/kg, intravenously twice a week for 8 weeks, DOX-HF group) or saline (control group). Effects of ET-1 (0.1, 1, 10 nM) were tested in papillary muscles from the DOX-HF group and a control group in the presence of: i) intact endocardial endothelium (EE); ii) damaged EE; iii) NG-nitro-L-arginine (L-NNA; NO synthase inhibitor), and iv) indomethacin (INDO; cyclooxygenase inhibitor). In the presence of an intact EE, ET-1 promoted concentration-dependent positive inotropic and lusitropic effects that were maintained after damaging the EE, in the presence of L-NNA or INDO and in the DOX-HF Group. ET-1 reduced resting tension at the end of the isometric twitch (increased diastolic distensibility) by 3.2±1.3 %, 6.0±1.6 % and 8.8±2.7 % (at 0.1, 1 and 10 nM, respectively), in muscles with intact EE, effect that was completely abolished after damaging EE, in the presence of L-NNA or INDO or in the DOX-HF Group. This study demonstrated that the increase in myocardial distensibility induced by ET-1 is absent in HF and is dependent of NO and prostaglandin release., C. Brás-Silva, D. Monteiro-Sousa, A. J. Duarte, M. Guerra, A. P. Fontes-Sousa, C. Moura, J. C. Areias, A. F. Leite-Moreira., and Obsahuje bibliografii a bibliografické odkazy
Nitric oxide (NO) is implicated in a wide variety of biological roles. NO is generated from three nitric oxide synthase (NOS) isoforms: neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) all of which are found in the lung. While there are no isoform-specific inhibitors of NOS, the recent development and characterization of mice deficient in each of the NOS isoforms has allowed for more comprehensive study of the importance of NO in the lung circulation. Studies in the mouse have identified the role of NO from eNOS in modulating pulmonary vascular tone and in attenuating the development of chronic hypoxic pulmonary hypertension., K. A. Fagan, I. McMurtry, D. M. Rodman., and Obsahuje bibliografii
a1_The effect of lesions induced by bilateral intracerebroventricular (ICV) injection of quinolinate (250 nmol of QUIN/ventricle), a selective N-methyl-D-aspartate (NMDA) receptor agonist, on [3H]glutamate ([3H]Glu) binding to the main types of both ionotropic and metabotropic glutamate receptors (iGluR and mGluR) was investigated in synaptic membrane preparations from the hippocampi of 50-day-old rats. The membranes from QUIN injured brains revealed significantly lowered binding in iGluR (by 31 %) as well as in mGluR (by 22 %) as compared to the controls. Using selected glutamate receptor agonists as displacers of [3H]Glu binding we found that both the NMDA-subtype of iGluR and group I of mGluR are involved in this decrease of binding. Suppression of nitric oxide (NO) production by NG-nitro-L-arginine (50 nmol of NARG/ventricle) or the increase of NO generation by 3-morpholinylsydnoneimine (5 nmol of SIN-1/ventricle) failed to alter [3H]Glu or [3H]CPP (3-((D)-2-carboxypiperazin-4-yl)-[1,2-3H]-propyl-1-phosphonic acid; NMDA-antagonist) binding declines caused by QUIN-lesions. Thus, our findings indicate that both the NMDA-subtype of iGluR and group I of mGluR are susceptible to the QUIN-induced neurodegeneration in the rat hippocampus. However, the inhibition of NO synthesis did not reveal any protective action in the QUIN-evoked, NMDA-receptor mediated decrease of [3H]Glu binding., a2_Therefore, the additional mechanisms of QUIN action, different from direct NMDA receptor activation/NO production (e.g. lipid peroxidation induced by QUIN-Fe-complexes) cannot be excluded., V. Lisý, F. Šťastný., and Obsahuje bibliografii
Recent data suggest that there is interaction between peripheral angiotensin II and nitric oxide. However, sparse information is available on the mutual interaction of these two compounds in the brain. The potential intercourse of nitric oxide with brain neuropeptides needs to be substantiated by assessing its local production and gene expression of the synthesizing enzymes involved. The aim of the present study was to evaluate whether the gene expression of brain nitric oxide synthase (bNOS) is related to the sites of gene expression of different components of the rat brain renin angiotensin system (renin, angiotensin converting enzyme (ACE) or angiotensin receptors of AT1 and AT2 subtypes). The levels of corresponding mRNAs were measured and correlated in nine structures of adult rat brain (hippocampus, amygdala, septum, thalamus, hypothalamus, cortex, pons, medulla and cerebellum). As was expected, positive correlation was observed between renin and angiotensin-converting enzyme mRNAs. Moreover, a significant correlation was found between brain NO synthase and AT1 receptor mRNAs, but not with mRNA of the AT2 receptor, ACE and renin. Parallel distribution of mRNAs coding for bNOS and AT1 receptors in several rat brain structures suggests a possible interaction between brain angiotensin II and nitric oxide, which remains to be definitely demonstrated by other approaches., O. Križanová, A. Kiss, Ľ. Žáčiková, D. Ježová., and Obsahuje bibliografii