Two greenhouse experiments were conducted in order to investigate the effects of different levels of water stress on gas exchange, chlorophyll fluorescence, chlorophyll content, antioxidant enzyme activities, lipid peroxidation, and yield of tomato plants (Solanum lycopersicum cv. Jinfen 2). Four levels of soil water content were used: control (75 to 80% of field water capacity), mild water stress (55 to 60%), moderate water stress (45 to 50%), and severe water stress (35 to 40%). The controlled irrigation was initiated from the third leaf stage until maturity. The results of
two-year trials indicated that the stomatal conductance, net photosynthetic rate, light-saturated photosynthetic rate, and saturation radiation decreased generally under all levels of water stress during all developmental stages, while compensation radiation and dark respiration rate increased generally. Water stress also declined maximum quantum yield of PSII photochemistry, electron transfer rate, and effective quantum yield of PSII photochemistry, while nonphotochemical quenching increased in all developmental stages. All levels of water stress also caused a marked reduction of chlorophyll a, chlorophyll b, and total chlorophyll content in all developmental stages, while activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, and lipid peroxidation increased., X. K. Yuan, Z. Q. Yang , Y. X. Li, Q. Liu, W. Han., and Obsahuje seznam literatury
Drought stress has multiple effects on the photosynthetic apparatus. Herein, we aimed to study the effect of drought stress on fluorescence characteristics of PSII in leaves of Plectranthus scutellarioides and explore potentially underlying mechanisms. Plants of P. scutellarioides were grown in a greenhouse and subjected to drought (DS, drought-stressed) or daily irrigation (control group). Leaf chlorophyll (Chl) index and induction kinetics curves of Chl a fluorescence and the JIP-test were used to evaluate effects of drought lasting for 20 d. Our results showed that both the leaf and soil relative water content decreased with increasing treatment duration. The leaf Chl index was reduced to half in the DS plants compared with the control group after 20 d. The minimal fluorescence in the DS plants was higher than that in the control plants after 10 d of the treatment. Maximum photochemical efficiency and lateral reactivity decreased with increasing treatment duration in the DS plants. With the continuing treatment, values of absorption flux per reaction center (RC), trapped energy flux per RC, dissipated energy flux per RC, and electron transport flux per RC increased in the earlier stage in the DS plants, while obviously decreased at the later stage of the treatment. In conclusion, drought stress inhibited the electron transport and reduced PSII photochemical activity in leaves of P. scutellarioides., L.-L. Meng, J.-F. Song, J. Wen, J. Zhang, J.-H. Wei., and Seznam literatury
The present study aimed to determine effects of drought stress on Lycium ruthenicum Murr. seedlings. Our results showed that mild drought stress was beneficial to growth of L. ruthenicum seedlings. Their height, basal diameter, crown, leaf number, stem dry mass, leaf and root dry mass increased gradually when the soil water content declined from 34.7 to 21.2%. However, with further decrease of the soil water content, the growth of L. ruthenicum seedlings was limited. After 28 d of treatment, the seedlings were apparently vulnerable to drought stress, which resulted in significant leaf shedding and slow growth. However, growth was restored after rehydration. Drought treatments led to a decrease in contents of chlorophyll (Chl) a, b, and Chl (a+b) and increase in the Chl a/b ratio. After rewatering, the Chl content recovered to the content of the control plants. Under drought stress, minimal fluorescence and nonphotochemical quenching coefficient increased, thereby indicating that L. ruthenicum seedlings could protect PSII reaction centres from damage. Maximum fluorescence, maximum quantum yield, actual quantum yield of PSII photochemistry, and photochemical quenching decreased, which suggested that drought stress impacted the openness of PSII reaction centres. A comparison of these responses might help identify the drought tolerance mechanisms of L. ruthenicum. This could be the reference for the planting location and irrigation arrangements during the growing period of L. ruthenicum., Y.-Y. Guo, H.-Y. Yu, D.-S. Kong, F. Yan, Y.-J. Zhang., and Obsahuje bibliografii
Five-year-old trees of deciduous Quercus robur L., evergreen Q. ilex L., and their semideciduous hybrid, Q. × turneri Willd. (var. pseudoturneri), growing in pots, were subjected to drought stress by withholding water for 18-22 days, until leaf water potentials decreased below -2 MPa. Gas-exchange rates, oxygen evolution, and modulated chlorophyll (Chl) fluorescence measurements revealed that by strong stomata closure and declining photosynthetic capacity down to approximately 50%, all three taxa responded with strongly reduced photosynthesis rates. In Q. robur, photochemical quenching of the drought-stressed plants was much lower than in nonstressed controls. Dissection of the occurring events in the photosynthetic electron transport chain by fast Chl fluorescence induction analysis with the JIP-test were discussed. and S. Koller, V. Holland, W. Brüggemann.
Pyrococcus furiosus is a hyperthermophilic archaeon. Its ribulose-1,5-bisphosphate carboxylase/oxygenase (PfRubisco) has only large subunit (L). PfRubisco has a novel (L2)5, decameric structure and it possesses higher carboxylase activity and thermotolerance. To assess the potential functionality of PfRubisco in higher plants under high-temperature stress, PfRubisco coding sequence was transiently expressed in Nicotiana benthamiana by Pea early browning virus mediated ectopic expression. The transgenic PfRubisco plants produced chlorotic yellow stripes in their leaves. Relative to the control leaves, those with yellow stripes exhibited decreased net photosynthetic rate and chlorophyll content, altered chloroplast ultrastructure, and more severe photoinhibition of both photosystem I and II. We concluded that the ectopic expression of PfRubisco might disrupt the chloroplast development and function in N. benthamiana. The potential cause of the disruption was discussed. and X. -G. Li ... [et al.].
To examine the hypothesis that stomatal behavior of plants in dry soil is influenced by a slow recovery from daytime water deficit, we studied the effect of repeated wetting of leaves during evening and night in Cryptomeria japonica seedlings grown in dry soil. After 7 and 10 days of leaf wetting treatment the midday leaf water potential decreased and the transpiration rate increased, respectively. Therefore, we suggest that rapid recovery from daytime water deficit could weaken the water conserving stomatal behavior that adapts to drought conditions in the roots. and T. Tange ... [et al.].
Excessive cadmium (Cd) content in soil leads to a number of phytotoxic effects and challenges agricultural production. Aim of this study was to investigate different responses of two maize inbreds and their hybrid to an elevated Cd content in soil by measuring photosynthetic and biochemical activity and to identify a Cd tolerance mechanism. Antioxidant statusrelated parameters varied significantly between inbreds and treatments. Dry mass increased in both inbreds, but remained unchanged in hybrid. After the Cd treatment, parameters of chlorophyll a fluorescence varied between inbreds and hybrid performance was similar to inbred B84. We concluded that inbred B84 is Cd-sensitive compared to Os6-2, which did not appear to be negatively affected by Cd treatment at this growth stage studied. We suspect that due to a dilution effect in the hybrid, there was no or very weak Cd stress detected by biochemical parameters, although stress was detected by chlorophyll a fluorescence., M. Franić, V. Galić, M. Mazur, D. Šimić., and Obsahuje bibliografii
Ginseng (Panax ginseng) is a typical perennial shade plant. Aim of this study was to investigate the effects of exogenous hormones on photosynthesis of P. ginseng. At different growth stages, the aerial parts of P. ginseng plants were cut at the stem base and they were inserted into the nutrient solutions containing different exogenous hormones. Then the leaf photosynthesis and water absorbing capacity (absorbing water mass) of the excised plants were measured. The results showed that exogenous abscisic acid (ABA) decreased significantly net photosynthetic rate (PN), stomatal conductance, transpiration rate, and absorbed water mass of excised P. ginseng at all growth stages, while both cytokinin (CTK) and indole-3-acetic acid (IAA) enhanced those parameters. Comparing different growth stages, ABA caused more severe inhibition of leaf photosynthesis at the early growth stage, while CTK and IAA showed significant enhancement of leaf photosynthesis at later growth stage. ABA reduced highly intercellular CO2 concentration of P. ginseng at the flowering and green fruit stages, but it had only a small effect at red fruit early and red fruit stages. During the early growth stage, the inhibitory effect of ABA on leaf PN might be caused mainly due to the stomatal limitation. However, the reason for this reduction was complex at the later growth stage and it included stomatal and other factors., X. Li, K. Xu., and Obsahuje bibliografii
Nitric oxide (NO) is an important signalling molecule with diverse physiological functions in plants. In plant cell, it is synthesised in several metabolic ways either enzymatically or nonenzymatically. Due to its high reactivity, it could be also cytotoxic in dependence on concentration. Such effects could be also mediated by NO-derived compounds. However, the role of NO in photosynthetic apparatus arrangement and in photosynthetic performance is poorly understood as indicated by a number of studies in this field with often conflicting results. This review brings a short survey of the role of exogenous NO in photosynthesis under physiological and stressful conditions, particularly of its effect on parameters of chlorophyll fluorescence. and D. Procházková ... [et al.].
We carried out a field experiment in order to study effects of fertilization in juvenile plants of three coffee (Coffea arabica) cultivars in Yunnan, SW China. Fertilization treatments included a control without fertilizer (CK), combinations of three NPK fertilization rates [high fertilization (FH), medium fertilization (FM), and low fertilization (FL) with 135, 90, and 45 g per plant per year, respectively], and at two N:P2O5:K2O ratios (R1, 1:0.5:0.8; R2, 1:0.8:0.5). The growth in juvenile plants was not altered by fertilization, with two clear growth peaks being observed in both the height and stem growth rates (RGRs) throughout a year. Both FM and FH resulted in significantly higher RGRs in both height and stem diameter compared to FL and CK in all three cultivars. At the same fertilization rate, the leaf area, branch number, longest branch length, internode number, and biomass of R2 were higher than those of R1, and P significantly affected the root biomass and root to shoot ratio. Compared to the FL treatment, both FM and FH treatments resulted in higher net photosynthetic rates and stomatal conductance across seasons, and in higher intrinsic water-use efficiency during the dry season and at the middle of the wet season. Photosynthetic nitrogen-use efficiency at R2 was higher than that at R1, but no significant differences were observed between the different fertilization rates. Among the three coffee cultivars, Caturra exhibited the highest height, stem diameter, longest branch length, and internode number. Our results indicated that the optimal N:P2O5:K2O ratio was 1:0.8:0.5 for the juvenile growth of coffee plants. Both FM and FH could help optimize the growth and photosynthetic rate of coffee plants, but FM is suitable for the ecological friendly agriculture and economic sustainability at coffee plantations., Z. X. Zhang, Z. Q. Cai, G. Z. Liu, H. Wang, L. Huang, C. T. Cai., and Obsahuje bibliografii