Tokamak - pinč - tokamak. Jak vysvětlit překvapivou odbočku z tokamakové dálnice na pinčovou okresku výzkumu řízené termojaderné fúze v moskevském ústavu LIPAN v letech 1952-1953? Konfrontací dvou události se podařilo do "záhady" vnést alespoň trochu světla. Těmi událostmi bylo setkání fyziků v roce 1947 v Harwellu a návštěva Olega Alexandroviče Lavrentěva ve fúzní skupině oddělení výzkumu plazmatu ústavu LIPAN v roce 1991. O. A. Lavrentěv v laboratoři spatřil Wirbelrohr!, Max Seenbeck named his modification of the circular accelerator betatron as the Wirbelrohr in the year 1943. The Wirbelrohr co-initiated research on controlled thermonuclear fusion in the UKA in the late forties. It is likely that the Wirbelrohr device slightly delayed research on the predecessor to the magnetic thermonuclear reactor, tokamak, in the Soviet Union., Milan Řípa., and Obsahuje seznam literatury
Experimental control of quantum systems has been pursued widely since the invention of quantum mechanics. In the first part of the 20th century, atomic physics helped provide a test bed for quantum mechanics through studies of atoms‘ internal energy differences and their interaction with radiation. The advent of spectrally pure, tunable radiation sources such as microwave oscillators and lasers dramatically improved these studies by enabling the coherent control of atoms‘ internal states to deterministically prepare superposition states, as, for example, in the Ramsey method. More recently this control has been extended to the external (motional) states of atoms. Laser cooling and other refrigeration techniques have provide the initial states for a number of interesting studies, such as Bose-Einstein condensation. Similarly, control of the quantum states of artificial atoms in the context of condensed-matter systems is achieved in many laboratories throughout the world. To give proper recognition to all of these works would be a daunting task; therefore, I will restrict these notes to experiments on quantum control of internal and external states of trapped atomic ions., David J. Wineland ; přeložil Karel Rohlena., and Obsahuje bibliografii
Článok má prierezový charakter. Je opísaná motivácia pre skúmanie možnosti vytvorenia nových, umelo vytvorených chemických prvkov a ich izotopov. Sú opísané experimenty vedúce k transuránovým a ďalekým transuránovým jadrám, až po 106-ty prvok - seaborgium. Sú analyzované fyzikálne poznatky, ktoré boli získané z experimentálnych údajov v tejto etape jádrových reakcií úplnej syntézy, do začiatku 80-tych rokov minulého storočia. Je diskutovaný vplyv vrstvovej štruktúry jadier na ich stabilitu, efekt extra-pushu a izospinu. V ďalšej časti sú opísané experimenty vedúce k syntéze jadier so Z = 107 - 112 metódou tzv. studenej fúzie. Ďalej sú opísané jádrové reakcie tzv. horúcej fúzie, v ktorých boli syntetizované jadrá superťažkých prvkov so Z = 114, 116, ale ktoré ešte len čaká definitívne potvrdenie. V záverečnej části práce sú analyzované v súčasnosti vykonávané experimenty, teoretické modely možných spôsobov syntézy superťažkých jadier a problém identifikácie oblasti najstabilnejších superťažkých jadier. Je uvedený význam a odhad ďalšieho možného vývoja fyziky superťažkých jadier., Š. Šáro, P. Cagarda., and Obsahuje seznam literatury
One hundred years ago Heike Kamerlingh Onnes arrived to one of the most important breakthroughs of 20th century physics - he discovered superconductivity. His finding as in many other cases in the history of science had been a result of use of a very new experimental technique. He used the cryogenic equipment in his Leiden's laboratory with the liquid helium cryocooler and measured electrical properties of metals near the absolute zero temperature. When cooled down to extremely low temperatures, near 4 Kelvin, very pure mercury suddenly lost its electrical resistance completely. Many major physicists of 20th century, experimentalists as well as theorists, devoted their life efforts to exploration of the mysterious properties of superconductors. Superconductivity has been shown to be one of the rare cases where quantum physics is observed on a macroscopic scale. Many chemical elements and thousands of compounds have been found to be superconducting. Fifty years after the discovery important practical applications such as strong magnets for laboratories and magnetic-resonance-imaging in hospitals came to the market. But more than seventy five years the superconducting materials had been functioning only at extreme cold, below 23 K (-250°C). In 1986 the "hightemperature superconductor's" era started with materials superconducting at -100°C. This paper surveys the history and the latest research into one of today's most fascinating physics and promising technologies., Peter Samuely., and Obsahuje bibliografii
K sedmdesátým narozeninám prof. Ivana Pelanta, jehož činnost se točí především kolem luminiscenční a nelineární optické spektroskopie., Jan Valenta, Petr Malý, Jan Hála., and Obsahuje seznam literatury
The Nobel Prize for Chemistry in 2014 was awarded for the development of super resolved fluorescence microscopic methods. This contribution introduces the two approaches, which overcome the diffraction limit of optical resolution, namely single molecule localization microscopy and spatially selective inhibition of fluorescence. The development of single molecule localization is followed from a historical perspective from its origins as low temperature single molecule spectroscopy to room temperature spectroscopy and imaging, which eventually led to methods of photoactivated fluorescence microscopy (PALM), stochastic reconstruction microscopy (STORM) and other high resolution techniques. The approach of spatial inhibition of fluorescence is demonstrated mainly by stimulated emission depletion (STED) techniques., Martin Vácha., and Obsahuje seznam literatury
Světelné znečistění odjakživa představuje palčivý problém zejména pro astronomy, kterým snižuje viditelnost noční oblohy. V posledních letech je však tomuto fenoménu věnováno mnohem více pozornosti i v jiných vědních oborech vzhledem k jeho negativním důsledkům, například v oblasti ochrany přírody, lidského zdraví, bezpečnosti či financí. V článku jsou tyto dopady stručně nastíněny a podrobněji jsou rozebrány fyzikální aspekty světelného znečištění, možnosti jeho měření a modelování a prognóza do budoucnosti., Light pollution (LP) poses a serious threat in particular, astronomers struggle with limited visibility of natural night sky objects. Due to the negative effects of bad lighting practices in various fields (e.g. environmental protection, human health, safety and security or economy) light pollution problematics have been extensively explored over the past years. This article presents a brief summary of these effects and a closer look into the physical aspects of light pollution, its measurement and quantification as well as future prospects., Milada Moudrá., and Obsahuje seznam literatury
Všude kolem nás je přítomno reliktní záření, světlo z období konce velkého třesku, které v sobě nese cenné informace o raném vesmíru a o prostředí, kterým k nám procházelo. Při poznávání vesmíru získáváme většinu informací o vzdálených objektech prostředníctvím elektromagnetického záření nejrůznějších vlnových délek. V mikrovlném oboru sledují dnešní specializované sondy nejen nejchladnější zákoutí vesmíru, ale i světlo dávných časů, které se vydalo na svou pouť v období, kdy se ve vesmíru formovaly první atomy., Cosmic microwave background radiation exists all around us. It is the light from the end of the Big Bang, which carries valuable information about the early universe and the environment, throught which it has passed. Most of the Information about distant objects we obtain through electromagnetic radiation at various wavelengths. In the microwave band today‘s specialised probes watch not only the coldest corners of the universe, but also the light from ancient times, which started its journey during the period when electron shells in atoms formed in the universe., Petr Kulhánek., and Obsahuje seznam literatury