Chronic kidney disease (CKD) is a life-threatening disease arising as a frequent complication of diabetes, obesity and hypertension. Since it is typically undetected for long periods, it often progresses to end-stage renal disease. CKD is characterized by the development of progressive glomerulosclerosis, interstitial fibrosis and tubular atrophy along with a decreased glomerular filtration rate. This is associated with podocyte injury and a progressive rise in proteinuria. As endothelin-1 (ET-1) through the activation of endothelin receptor type A (ETA) promotes renal cell injury, inflammation, and fibrosis which finally lead to proteinuria, it is not surprising that ETA receptors antagonists have been proven to have beneficial renoprotective effects in both experimental and clinical studies in diabetic and non-diabetic CKD. Unfortunately, fluid retention encountered in large clinical trials in diabetic CKD led to the termination of these studies. Therefore, several advances, including the synthesis of new antagonists with enhanced pharmacological activity, the use of lower doses of ET antagonists, the addition of diuretics, plus simply searching for distinct pathological states to be treated, are promising targets for future experimental studies. In support of these approaches, our group demonstrated in adult subtotally nephrectomized Ren-2 transgenic rats that the addition of a diuretic on top of renin-angiotensin and ETA blockade led to a further decrease of proteinuria. This effect was independent of blood pressure which was normalized in all treated groups. Recent data in non-diabetic CKD, therefore, indicate a new potential for ETA antagonists, at least under certain pathological conditions., I. Vaněčková, S. Hojná, M. Kadlecová, Z. Vernerová, L. Kopkan, L. Červenka, J. Zicha., and Seznam literatury
The present review is intended to focus on naturally occurring cytoprotective agents such as resveratrol (trans-3,4’,5- trihydroxystilbene) and other related compounds, probably with similar molecular mechanisms of action and high capacity to find applications in medical fields. Several physiological aspects have been ascribed to resveratrol and similar compounds. Resveratrol, among others, has been recently described as a silent information regulator T1 (SIRT1) activator that increases AMPactivated protein kinase (AMPK) phosphorylation and reduces the oxidative damage biomarkers during aging in laboratory settings. The reports on resveratrol and other SIRT1 activators from various sources are encouraging. The pharmacological strategies for modulation of sirtuins by small molecules through allosteric mechanisms should gain a greater momentum including human research. Resveratrol and resveratrol-like molecules seem to fulfill the requirement of a new horizon in drug research since these molecules cover a growing research means as antioxidants with allosteric mechanism in epigenetic drug targets. However, one should keep in mind the challenges of extrapolation of basic research into clinical results. Overall, the issue of sirtuins in biology and disease provides an insight on therapeutic potentials of sirtuin-based therapeutics and demonstrates the high complexity of drug-targeting these modalities for human applications., H. Farghali, N. Kutinová Canová, N. Lekić., and Obsahuje seznam literatury
Retinol binding protein 4 (RBP4) is a novel adipokine which might be involved in the development of insulin resistance. The aim of the study was to investigate the expression of RBP4 mRNA in subcutaneous and visceral fat depots and the relationship between RBP4 plasma and mRNA levels relative to indices of adiposity and insulin resistance. In 59 Caucasian women (BMI 20 to 49 kg/m2 ) paired samples of subcutaneous and visceral fat were obtained for RBP4, leptin and GLUT 4 mRNA analysis using reverse transcription-quantitative PCR. Euglycemic hyperinsulinemic clamp and computed tomography scans were performed. RBP4 mRNA levels as well as GLUT 4 mRNA and leptin mRNA levels were lower (P<0.001, P<0.01 and P<0.001, respectively) in visceral compared to subcutaneous fat. No differences were found in RBP4 mRNA expression in the two fat depots or in RBP4 plasma levels between subgroups of non-obese subjects (n=26), obese subjects without metabolic syndrome (n=17) and with metabolic syndrome (n=16). No correlations between RBP4 mRNA or plasma levels relative to adiposity, glucose disposal rate and GLUT 4 mRNA expression in adipose tissue were found. There was a weak positive correlation between plasma RBP4 and plasma triglycerides (r = 0.30, p<0.05) and between plasma RBP4 and blood glucose (r = 0.26, p<0.05). Regardless of the state of adiposity or insulin resistance, RBP4 expression in humans was lower in visceral than in subcutaneous fat. We found no direct relationship between either RBP4 mRNA or its plasma levels and the adiposity or insulin resistance. and Obsahuje bibliografii a bibliografické odkazy
The vessels on the fetal side of the placenta differ from most other vascular beds except the lungs in that they respond to acute hypoxia by vasoconstriction. An essential role of calcium influx in the mechanism of this hypoxic fetoplacental vasoconstriction (HFPV) has been shown previously. That finding does not, however, exclude the possible involvement of other mechanisms of vascular tone regulation. In this study we tested the hypothesis that Rho-kinase-mediated calcium sensitization is involved in HFPV. We used a model of isolated rat placenta dually perfused (from both the maternal and fetal side) with Krebs salt solution saturated with normoxic and hypoxic gas mixture respectively at constant flow rate. Rho-kinase pathway was inhibited by fasudil (10 μM). We found that fasudil reduced basal normoxic fetoplacental vascular resistance and completely prevented HFPV. This suggests that the activity of Rho-kinase signaling pathway is essential for HFPV., P. Kafka, ... [et al.]., and Obsahuje seznam literatury
The present study was performed to evaluate the role of neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) during the developmental phase of hypertension in transgenic rats harboring the mouse Ren-2 renin gene (TGR). The first aim of the present study was to examine nNOS mRNA expression in the renal cortex and to assess the renal functional responses to intrarenal nNOS inhibition by S-methyl-L-thiocitrulline (L-SMTC) in heterozygous TGR and in age-matched transgene-negative Hannover Sprague-Dawley rats (HanSD). The second aim was to evaluate the role of the renal sympathetic nerves in mediating the renal functional responses to intrarenal nNOS inhibition. Thus, we also evaluated the effects of intrarenal L-SMTC administration in acutely denervated TGR and HanSD. Expression of nNOS mRNA in the renal cortex was significantly increased in TGR compared with HanSD. Intrarenal administration of L-SMTC decreased the glomerular filtration rate (GFR), renal plasma flow (RPF) and sodium excretion and increased renal vascular resistance (RVR) in HanSD. In contrast, intrarenal inhibition of nNOS by L-SMTC did not alter GFR, RPF or RVR and elicited a marked increase in sodium excretion in TGR. This effect of intrarenal L-SMTC was not observed in acutely denervated TGR. These results suggest that during the developmental phase of hypertension TGR exhibit an impaired renal vascular responsiveness to nNOS derived NO or an impaired ability to release NO by nNOS despite enhanced expression of nNOS mRNA in the renal cortex. In addition, the data indicate that nNOS-derived NO increases tubular sodium reabsorption in TGR and that the renal nerves play an important modulatory role in this process., L. Červenka, H. J. Kramer, J. Malý, I. Vaněčková, A. Bäcker, D. Bokemeyer, M. Bader, D. Ganten, K. D. Mitchell., and Obsahuje bibliografii
The saccadic eye movement related potentials (SEMRPs) enable to study brain mechanisms of the sensorimotor integration. SEMRPs provide insight into various cognitive mechanisms related to planning, programming, generation and execution of the saccadic eye movements. SEMRPs can be used to investigate pathophysiological mechanisms of several disorders of the central nervous system. Here we shortly summarize basic findings concerning the significance of SEMRP components, their relationship to the functional brain asymmetry and visual attention level as well as changes related to certain neuropsychological disorders., F. Jagla, M. Jergelová, I. Riečanský., and Obsahuje bibliografii a bibliografické odkazy
To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H 2 ) groups. Treatment with saturated hydrogen saline prolonged the median su rvival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)- α and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (P<0.05). Cell apoptosis was detected in liver tissues after LPS treatment, and attenuated by saturated hydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF- κ B), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (P<0.05). Thus, saturated hydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen- activated protein kinase (MAPK), NF- κ B, and Smac may contribute to saturated hydrogen saline-mediated liver protection., X.-F. Xu, J. Zhang., and Obsahuje seznam literatury
a1_Young intact (18 days of age) and adult ovariectomized (OV-X, ovariectomized between 21 to 24 days of age) C3H/Di mice were used to measure the estrogenicity on the basis of the growth response of mammary epithelial structures and weight of the uterus. The percentage area of the mammary fat pad occupied by mammary epithelial structures was progressively increased by 17ß estradiol from dose 0.001 µg.d-1. The maximum effective dose of estradiol was 0.01 µg.d-1 and the dose 10 µg.d-1 of estradiol decreased mammary size to control levels (inverted-U-shaped dose-response curve). Progesterone alone progressively stimulated mammary growth in young intact females from dose 125 µg.d-1, in adult OV-X animals from dose 1000 µg.d-1. Both in young intact and adult OV-X animals, uterine weight progressively increased during estradiol treatment. Progesterone alone had no effect on uterine weight in young intact animals; in adult OV-X animals, uterine weight was increased starting from dose 250 µg.d-1. Progesterone acted synergistically with estradiol to produce higher mammary growth than that in females treated with estradiol alone. The effects of a combination of estradiol plus progesterone in the mammary gland were mimicked by norethindrone acetate and inhibited by cortisol in both young intact and adult OV-X animals. Testosterone inhibited estradiol plus progesterone stimulated growth of mammary gland only in OV-X animals, but stimulated uterine weights in both young intact and adult OV-X animals. Spleen weight and size of mammary lymph nodes were not affected by estradiol, progesterone, norethindrone acetate or testosterone, but were decreased by cortisol. Cortisol also decreased the percent area of the mammary fat pad occupied by mammary epithelial structures, but had no effect on weight of the uterus. These results show that bioassay of estrogenicity in females is not specific., a2_Mammary and uterine growth is stimulated not only by estrogens but also by progesterone and testosterone, respectively. ., J. Škarda., and Obsahuje bibliografii
a1_Young intact (18 days old) and adult castrated males of CBA and C3H/Di mice were used for measuring the estrogenicity on the basis of growth response of mammary epithelial structures and the weight of seminal vesicles. It was demonstrated that heavier young males had disproportionally heavier seminal vesicles (sex steroid-responsive organs) than small animals at day 33 of age (that is on the day when experimental animals were killed and organs dissected). However, the weight of the spleen (sex steroid-nonresponsive organ) was proportionally related to body weight. To minimize variability in hormone responsiveness, all animals were weighed at the age of 18 days and only males weighing 8±1 g were used for hormone treatment. The percentage area of mammary fat pad occupied by mammary epithelial structures was progressively increased by 17ß estradiol from dose 0.01 µg.d-1. The maximum effective dose of estradiol was 0.1 µg.d-1 and dose 10 µg.d-1 of estradiol decreased mammary size to control level (inverted-U-shaped dose-response curve). Progesterone alone stimulated mammary growth only in high doses (500 µg.d-1 and higher) in young intact males, but had no effect on mammary growth in adult castrated animals. In young intact males, estradiol alone, or progesterone alone decreased the weight of seminal vesicles. No such inhibitory effect of these hormones was noted in adult castrated males. Progesterone acted synergistically with estradiol to produce higher mammary growth compared to that in males treated with estradiol alone. In the presence of progesterone seminal vesicles weight was decreased by estradiol given in such low doses as 0.001 µg.d-1 of estradiol, which is 10 times lower than that effective in animals treated with estradiol alone. On the other hand, in the adult castrated males a combination of estradiol plus progesterone stimulated seminal vesicles weight., a2_The effects of a combination of estradiol plus progesterone in the mammary gland were mimicked by norethindrone acetate (a synthetic steroid exhibiting progestantial and estrogenic activities) and inhibited by both testosterone and cortisol. Estradiol, progesterone, norethindrone acetate, or testosterone did not affect spleen weight and size of mammary lymph nodes. However, cortisol significantly decreased not only spleen weights but also size of mammary lymph nodes. These results show that simultaneous evaluation of mammary gland growth, seminal vesicles, and the spleen weight in the same animal is suitable for bioassay of estrogenicity as well as for detection of androgenic and antiandrogenic activities., J. Škarda., and Obsahuje bibliografii
Monoaminergic neurotransmitter 5-hydroxytryptamine (5-HT), also known as serotonin, plays im portant roles in modulating the function of the olfactory system. However, thus far, the knowledge about 5-HT and its receptors in olfactory receptor neurons (ORNs) and their physiological role have not been fully characterized. In the present study, reverse transcription- polymerase chain reaction (RT-PCR) analysis revealed the presence of 5-HT 1A and 5-HT 1B receptor subtypes in mouse olfactory epithelium at the mRNA level. With subtype selective antibodies and standard immunohistochemical techniques, both receptor subtypes were found to be positively labeled. To further elucidate the molecular mechanisms of 5-HT act on the peripheral olfactory transduction, the whole-cell patch clamp techniques were used on freshly isolated ORNs. We found that 5-HT decreased the magnitude of outward K + current in a dose- dependent manner and these inhi bitory effects were markedly attenuated by the 5-HT 1A receptor blocker WAY-100635 and the 5-HT 1B receptor antagonist GR55562. These data suggested that 5-HT may play a role in the modu lation of peripheral olfactory signals by regulating outward potassium currents, both 5-HT 1A and 5-HT 1B receptors were involved in this regulation., S. Gao, ... [et al.]., and Obsahuje seznam literatury