Over activation of the endothelin-1 (ET-1) system in disease states contributes to endothelial dysfunction. On the other hand, ET-1 promotes proliferation and survival of endothelial cells. Regulation of programmed cell death (PCD) pathways is critical for cell survival. Recently discovered necroptosis (regulated necrosis) is a pathological PCD mechanism mediated by the activation of toll like receptor 4 (TLR4), which also happens to stimulate ET-1 production in dendritic cells. To establish the effect of ET-1 on PCD and survival of human brain microvascular endothelial cells (BMVECs) under control and inflammatory conditions, BMVECs were treated with ET-1 (10 nM, 100 nM and 1 μM) or lipopolysaccharide (LPS, 100 ng/ml). ET receptors were blocked with bosentan (10 μM). Under normal growth conditions, exogenous ET-1 reduced BMVEC viability and migration at a relatively high concentration (1 μM). This was accompanied with activation of necroptosis and apoptosis marker genes. LPS decreased endogenous ET-1 secretion, increased ETB receptor expression and activated necroptosis. Even though ET-1 levels were low (less than 10 nM levels used under normal growth conditions), blocking of ET receptors with bosentan inhibited the necroptosis pathway and improved the cell migration ability of BMVECs, suggesting that under inflammatory conditions, ET-1 activates PCD pathways in BMVECs even at physiological levels., Y. Abdul, R. Ward, G. Dong, A. Ergul., and Seznam literatury
The kinin receptors are classically involved in inflammation, pain and sepsis. The effects of the kinin B1 receptor agonist des-Arg9 - bradykinin (DBK) and lipopolysaccharide (LPS) were investigated by comparing the membrane potential responses of aortic rings from transgenic rats overexpressing the kinin B1 receptor (B1R) in the endothelium (TGR(Tie2B1)) and Sprague Dawley (SD) rats. No difference in the resting membrane potential in the aorta’s smooth muscle from the transgenic and SD rats was observed. The aorta rings from SD rats hyperpolarized only to LPS but not to DBK, whereas the aorta rings from TGR(Tie2B1) responded by the administration of both drugs. DBK and LPS responses were inhibited by the B1 receptor antagonist R715 and by iberiotoxin in both cases. Thapsigargin induced a hyperpolarization in the smooth muscle of SD rats that was not reversed by R715, but was reversed by iberiotoxin and this hyperpolarization was further augmented by DBK administration. These results show that the model of overexpression of vascular B1 receptors in the TGR(Tie2B1) rats represent a good model to study the role of functional B1 receptors in the absence of any pathological stimulus. The data also show that KCa channels are the final mediators of the hyperpolarizing responses to DBK and LPS. In addition, we suggest an interaction between the B1R and TLR4, since the hyperpolarization induced by LPS could be abolished in the presence of R715.
To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H 2 ) groups. Treatment with saturated hydrogen saline prolonged the median su rvival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)- α and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (P<0.05). Cell apoptosis was detected in liver tissues after LPS treatment, and attenuated by saturated hydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF- κ B), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (P<0.05). Thus, saturated hydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen- activated protein kinase (MAPK), NF- κ B, and Smac may contribute to saturated hydrogen saline-mediated liver protection., X.-F. Xu, J. Zhang., and Obsahuje seznam literatury