Thermal stability of thylakoid membranes isolated from acclimated and non-acclimated wheat (Triticum aestivum L. cv. HD 2329) leaves under irradiation was studied. Damage to the photosynthetic electron transport activity was more pronounced in thylakoid membranes isolated from non-acclimated leaves as compared to thylakoid membrane isolated from acclimated wheat leaves at 35 °C. The loss of D1 protein was faster in non-acclimated thylakoid membrane as compared to acclimated thylakoid membranes at 35 °C. However, the effect of elevated temperature on the 33 kDa protein associated with oxygen evolving complex in these two types of thylakoid membranes was minimal. Trypsin digestion of the 33 kDa protein in the thylakoid membranes isolated from control and acclimated seedlings suggested that re-organisation of 33 kDa protein occurs before its release during high temperature treatment. and A. K. Singh, G. S. Singhal.
Reactive oxygen species and other oxidants are involved in the mechanism of postischemic contractile dysfunction, known as myocardial stunning. The present study investigated the oxidative modification of cardiac proteins in isolated Langendorff-perfused rabbit hearts subjected to 15 min normothermic ischemia followed by 10 min reperfusion. Reperfusion under these conditions resulted in only 61.8±2.7 % recovery of developed pressure relative to preischemic values and this mechanical dysfunction was accompanied by oxidative damage to cardiac proteins. The total sulfhydryl
group content was significantly reduced in both ventricle homogenates and mitochondria isolated from stunned hearts. Fluorescence measurements revealed enhanced formation of bityrosines and conjugates of lipid peroxidation-end products with proteins in cardiac homogenates, whereas these parameters were unchanged in the mitochondrial fraction. Reperfusion did not alter protein surface hydrophobicity, as detected by a fluorescent probe 1-anilino-8-naphthalenesulfonate. Our results indicate
that oxidation of proteins in mitochondria and possibly in other intracellular
structures occurs during cardiac reperfusion and might contribute to ischemia-reperfusion injury.
The aim of this study was to establish whether administration of toxic doses of isoproterenol (IPRO) increases the accumulation of strontium - a homologue element of calcium - in the rat heart during postnatal development. It has been shown that in 14-day-old animals “Sr uptake was not increased; starting from the 30th day of postnatal life this parameter increases significantly up to adulthood.
In a sand culture experiment on mustard (Brassica juncea L. Czern. & Coss) cv. Varuna, all tested characteristics at 60 d stage and yield characteristics at harvest were enhanced by K application as its levels increased from 5 to 10, 15, 20, 25, and 30 mM K, with 20 mM K proving best. and F. Mohammad, U. Naseem.
This study determined the effect of larval density-dependent competition for food on development and adult fitness in Sesamia nonagriodes Lef. (Lepidoptera: Noctuidae). Different numbers (5, 10, 15, 20 and 30 individuals) of larvae of the pink stalk borer were reared on a constant amount of food. Although crowding during the immature stages did not significantly increase mortality, it prolonged the larval developmental period and resulted in reduced pupal weight. Females were more adversely affected by high density than males, resulting in lighter females, indicating that female growth is more sensitive to density. The fecundity of the adults reared in the various larval crowding treatments was analysed. Total female fecundity was correlated negatively with increasing larval density. The effects of crowding on fecundity were not caused by the reduced pupal weight, indicating that food shortage during larval development may affect adult traits. Female longevity was negatively affected by density and positively related to pupal weight. Thus, larval density may affect the allocation of food resources and adult fitness. We conclude that crowding related changes during larval development directly affect larval life and reduce female fitness.
Shoots of the tropical latex-producing tree Hevea brasiliensis (rubber tree) grow according to a periodic pattern, producing four to five whorls of leaves per year. All leaves in the same whorl were considered to be in the same leaf-age class, in order to assess the evolution of photosynthesis with leaf age in three clones of rubber trees, in a plantation in eastern Thailand. Light-saturated CO2 assimilation rate (Amax) decreased more with leaf age than did photosynthetic capacity (maximal rate of carboxylation, Vcmax , and maximum rate of electron transport, Jmax), which was estimated by fitting a biochemical photosynthesis model to the CO2-response curves. Nitrogen-use efficiency (Amax/Na, Na is nitrogen content per leaf area) decreased also with leaf age, whereas Jmax and
Vcmax did not correlate with Na. Although measurements were performed during the rainy season, the leaf gas exchange parameter that showed the best correlation with Amax was stomatal conductance (gs). An asymptotic function was fitted to the Amax-gs relationship, with R2 = 0.85. Amax, Vcmax, Jmax and gs varied more among different whorls in the same clone than among different clones in the same whorl. We concluded that leaf whorl was an appropriate parameter to characterize leaves for the purpose of modelling canopy photosynthesis in field-grown rubber trees, and that stomatal conductance was the most important variable explaining changes in Amax with leaf age in rubber trees. and B. Kositsup ... [et al.].
In the present study we used the primary cultures of chick embryonic muscle and liver cells as a model for potential mutual combination effects of leptin and insulin, respectively. The influence of both hormones on the proliferation and protein synthesis was dose-dependent and related to the age of embryos from which the cells were isolated. Leptin (10 and 100 ng/well) increased the proliferation (estimated by DNA content and incorporation of labeled thymidine into DNA) and protein synthesis (determined by incorporation of labeled leucine into proteins) of muscle cells. The effect of leptin and insulin in muscle cells was similar. In younger embryo (11-day-old) the lower dose of leptin was more effective than the higher one compared to the insulin effect. Mutual effects of leptin and insulin were neither additive nor synergistic and were equivalent to the effects of individual hormones. In hepatocytes the influence of leptin was dependent on the age at which the cells were isolated (11- and 19-day-old embryos). The presence of insulin neither potentiated nor inhibited the effect of leptin., D. Lamošová, M. Zeman., and Obsahuje bibliografii
We examined the effect of leptin on the insulin resistance in skeletal muscles by measuring glucose transport. Male Wistar rats were fed rat chow or high-fat diets for 30 days. Before sacrifice, rats fed high-fat diet were subcutaneously injected with leptin (1 mg/kg b.w.) for 3 days. The glucose transport in epitrochlearis and soleus muscles did not differ in the experimental groups under basal conditions, however these values decreased significantly in the rats fed high-fat diet under insulin stimulation (p<0.01). Leptin treatment recovered the decreased glucose transport in epitrochlearis (p<0.05) and soleus muscles (p=0.08). Triglyceride concentrations in soleus muscles were increased significantly in the rats fed high-fat diet as compared to rats fed chow diet (p<0.01), and were decreased significantly by leptin treatment (p<0.01). The glucose transport was measured under basal conditions and after 60 μU/ml of insulin treatment with or without 50 ng/ml of leptin. Leptin had no direct stimulatory effect on glucose transport under both basal and insulin-stimulated conditions in vitro. These results demonstrate that leptin injection to rats fed high-fat diet recovered impaired insulin responsiveness of skeletal muscles and muscle triglyceride concentrations. However, there was no direct stimulatory effect of leptin on insulin sensitivity of skeletal muscles in vitro.
The effects of actinic light (AL) intensity on the age dependence of nonphotochemical fluorescence quenching (qN) and effective quantum yield in PSII (ΦPSII) were studied in continuously illuminated wheat leaves of the upper tier. Regular changes were revealed in both age dependence of qN at elevated AL intensities and light curves of qN. These changes are related to alterations in strategies of redistribution and use of absorbed light energy by the photosynthetic apparatus at different stages of wheat leaf development. Unlike ΦPSII, qN as a parameter was more sensitive to the differences in the leaf age at a certain range of light intensities. At the same time, the stability of qN at moderate light intensities may serve as an indication of leaf maturity., T. V. Nesterenko, V. N. Shikhov, A. A. Tikhomirov., and Obsahuje seznam literatury