Previous morphological and physiological studies have suggested that the adrenergic innervation of the dorsal motor nucleus of the vagus nerve (dmnX) is involved in direct synaptic inhibition of parasympathetic preganglionic neurones of the vagus that control secretion of pancreatic insulin. We investigated the effects of bilateral 6-hydroxydopamine (6-OHDA) lesions of adrenergic innervation of the dmnX on pancreatic insulin secretion and glycaemia in normal and vagotomized rats. After two weeks the 6-OHDA lesions produced a marked increase in circulating insulin levels, but no change in glycaemia. Hyperinsulinaemia after adrenergic denervation of the dmnX was more pronounced when a glucose bolus was injected intraarterially. Bilateral subdiaphragmatic vagotomy reversed the observed hyperinsulinaemia. This targeted pharmacological lesion of the adrenergic innervation of dmnX thus causes hypersecretion by pancreatic B cells, an effect which requires an intact vagus nerve.
Several studies have found the photosynthetic integration in clonal plants to response to resource heterogeneity, while little is known how it responses to heterogeneity of UV-B radiation. In this study, the effects of heterogeneous UV-B radiation (280-315 nm) on gas exchange and chlorophyll fluorescence of a clonal plant Trifolium repens were evaluated. Pairs of connected and severed ramets of the stoloniferous herb T. repens were grown under the homogeneity (both of ramets received only natural background radiation, ca. 0.6 kJ m-2 d-1) and heterogeneity of UV-B radiation (one of the ramet received only natural background radiation and the other was exposed to supplemental UV-B radiation, 2.54 kJ m-2 d-1) for seven days. Stomatal conductance (g s), intercellular CO2 concentration (Ci) and transpiration rate (E) showed no significant differences in connected and severed ramets under homogenous and heterogeneous UV-B radiation, however, net photosynthetic rate (PN) and maximum photosynthetic rate (Pmax) of ramets suffered from supplemental increased UV-B radiation and that of its connected sister ramet decreased significantly. Moreover, additive UV-B radiation resulted in a notable decrease of the minimal fluorescence of dark-adapted state (F0), the electron transport rate (ETR) and photochemical quenching coefficient (qP) and an increase of nonphotochemical quenching (NPQ) under supplemental UV-B radiation, while physiological connection reverse the results. In all, UV-B stressed ramets could benefit from unstressed ramets by physiological integration in photosynthetic efficiency, and clonal plants are able to optimize the efficiency to maintain their presence in less favourable sites. and Q. Li ... [et al.].
In leaves of field-grown grapevine, the contents of chlorophyll, carotenoids, and soluble proteins and the activities of ribulose-1,5-bisphosphate carboxylase (RuBPC) and nitrate (NR) and nitrite (NiR) reductases were decreased in phytoplasma-infected leaves, but the contents of soluble sugars and total saccharides were markedly increased. In isolated thylakoids, phytoplasma caused marked inhibition of whole chain and photosystem 2 (PS2) activities. The artificial exogenous electron donor, diphenyl carbazide, significantly restored the loss of PS2 activity in infected leaves. and M. Bertamini, N. Nedunchezhian.
The contents of chlorophyll (Chl), leaf biomass, and soluble proteins were markedly decreased in phytoplasma infected apple leaves. Similar results were also observed for ribulose-1,5-bisphosphate carboxylase, 14CO2 fixation, and nitrate reductase activity. In contrast, the contents of sugars, starch, amino acids, and total saccharides were significantly increased in phytoplasma infected leaves. In isolated chloroplasts, phytoplasma infection caused marked inhibition of whole photosynthetic electron chain and photosystem 2 (PS2) activity. The artificial exogenous electron donor, diphenyl carbazide, significantly restored the loss of PS2 activity in infected leaves. Similar results were obtained when Fv/Fm was evaluated by in vivo Chl a fluorescence kinetic measurements. and M. Bertamini ... [et al.].
Pioglitazone (PIO) is a thiazolidindione antidiabetic agent which improves insulin sensitivity and reduces blood glucose in experimental animals and treated patients. At the cellular level the actions of PIO in diabetic heart are poorly understood. A previous study has demonstrated shortened action potential duration and inhibition of a variety of transmembrane currents including L-type Ca2+ current in normal canine ventricular myocytes. The effects of PIO on shortening and calcium transport in ventricular myocytes from the Goto-Kakizaki (GK) type 2 diabetic rat have been investigated. 10 min exposure to PIO (0.1-10 μM) reduced the amplitude of shortening to similar extents in ventricular myocytes from GK and control rats. 1 μM PIO reduced the amplitude of the Ca2+ transients to similar extents in ventricular myocytes from GK and control rats. Caffeine-induced Ca2+ release from the sarcoplasmic reticulum and recovery of Ca2+ transients following application of caffeine and myofilament sensitivity to Ca2+ were not significantly altered in ventricular myocytes from GK and control rats. Amplitude of L-type Ca2+ current was not significantly decreased in myocytes from GK compared to control rats and by PIO treatment. The negative inotropic effects of PIO may be attributed to a reduction in the amplitude of the Ca2+ transient however, the mechanisms remain to be resolved., K. A. Salem, V. Sydorenko, M. Qureshi, M. Oz, F. C. Howarth., and Seznam literatury
A combination of biological control and host-plant resistance is needed to control greenhouse whitefly, Trialeurodes vaporariorum (Westwood). The high level of susceptibility of several host plants to whitefly, based on their performance on these plants, is well documented. These studies only provide information on the overall host-plant acceptance by whiteflies. Here, we use a method that allows an examination of the different tissue layers in the overall acceptance. The effects of plant tissue factors on whitefly probing profiles were monitored using the electrical penetration graph (EPG) method. The EPGs of whitefly originating from a culture on glasshouse cucumber, were recorded for 8 hours on sweet pepper, tomato, gerbera and cucumber plants produced in a glasshouse. On sweet pepper the graphs showed that whitefly made many short probes, had long xylem phases, short phloem phases, and the shortest duration of first probes. An opposite probing profile was found on cucumber: longer probes, shorter xylem phases, fewer phloem phases but of longer duration, and longer first probes. The values of these parameters for gerbera and tomato were intermediate. Whiteflies encountered the greatest stimulation or the least resistance in the tissues of cucumber, and the least stimulation or the greatest resistance in the tissues of sweet pepper. Rejection of host plants probably occurred before the phloem tissue was reached, as the probes prior to a whitefly leaving a host plant were so short that the stylets cannot have reached the phloem. But phloem factors also determine host-plant rejection, as phloem probing on sweet pepper - a poor host plant - was much shorter than on the other host plants. Resistance factors seem, therefore, to be located both in the epidermis/mesophyll and in the phloem. We hypothesize that the factors encountered by whitefly in the different tissue layers during probing contribute to the acceptance or rejection of a host plant. Based on the performance of whitefly on these plants, which is also reflected in the values of the EPG parameters, the order of acceptance ranked from high to low is cucumber > tomato = gerbera > sweet pepper.
The effects of pleuran, ß-1,3 glucan isolated from Pleurotus ostreatus, were studied in a model of acute colitis induced by intracolonic administration of acetic acid. There was a reduction of the colonic damage score, colonic wet weight and wet/dry weight ratio 48 h after single luminal 2 % pleuran suspension pretreatment. Similar results were obtained after repeated intraperitoneal administration of pleuran in doses of 30 and 100 mg/kg. Pleuran given orally as a 10 % food component over 4 weeks was effective in reducing the extent of mucosal damage, but did not prevent the increase of myeloperoxidase in the injured colonic segment. In the segment without macroscopic evidence of inflammation, myeloperoxidase activity was significantly lower as documented by histological examination. The results indicate a possible role of this immunomodulator in the treatment of ulcerative colitis., V. Nosáľová, P. Bobek, S. Černá, Š. Galbavý, S. Štvrtina., and Obsahuje bibliografii
The New World grasshopper Cornops aquaticum (Leptysminae: Acrididae) shows a geographical pattern for three Robertsonian polymorphisms in its southernmost area of distribution in Argentina and Uruguay. The frequency and distribution of chiasmata were analysed in five Argentinian populations. This study reveals a strong redistribution of chiasmata in fusion carriers, with a reduction in proximal and increase of distal chiasma frequency in fusion bivalents and trivalents, when all three karyotypes were compared. However, when only fusion bivalents and trivalents were compared, chiasma frequency was significantly higher in the former than in the latter. This higher chiasma frequency in fusion bivalents is due to an increase in proximal chiasma frequency. It is argued that the reduction in proximal chiasma frequency (relative to unfused bivalents) in fusion bivalents may be due to interference across the centromere. Proximal chiasma reduction in trivalents may be attributed either to a physical effect of structural heterozygosity or to an adaptation to the polymorphic condition. Therefore the differences in the distribution of chiasmata in trivalents and Robertsonian bivalents have different causes.
Trapped or residual air (or gas) is known to affect the multiphase hydraulic properties of both soils and rocks. Trapped air is known to impact many vadose zone hydrologic applications such as infiltration and flow in the capillary fringe, but is also a major issue affecting recoverable oil reserves. Although many studies have focused on the relationship between porosity and trapped gas saturation (Sgt) in sandstones, far fewer studies have been carried out for carbonate rocks. This work aims to analyze the influence of porous media properties on trapped gas saturation in carbonate rocks. For this we used thirteen Indiana Limestone and Silurian dolomite rock samples from the USA, and several coquinas from the Morro do Chaves formation in Brazil. Pore size distributions were obtained for all samples using Nuclear Magnetic Resonance (NMR), and Mercury Injection Capillary Pressure (MICP) data from three of the samples to determine their pore throat size distributions. Additionally, 3D microtomography (microCT) images were used to quantify macropore profiles and pore connectivities. Results indicate a lower capacity of gas trapping in carbonate rocks in which micro- and mesopores predominate. Results also indicate that in carbonate rocks, pore size exerts a greater influence on the ability of gas trapping compared to pore connectivity, so that rocks with a predominance of macropores have greater capacity for gas trapping, even when the macropores are well interconnected. These findings show that pore characteristics very much affect the processes governing gas trapping in carbonate rocks, and indirectly the multiphase hydraulic properties and recoverable oil reserves of carbonate rock reservoirs.
The effects of postharvest pretreatments on vase life, keeping quality and carbohydrate concentrations in cut sweet pea (Lathyrus odoratus L.) flowers were investigated. Compared to the control, all treatments promoted floret quality and extended longevity. The cut flowers held in the solution containing sucrose + 8-hydroxyquinoline (Suc+HQS) was more effective in promoting absorption rate, achieved greater maximum fresh mass, had better water balance for a longer period, extended the vase life (up to 17 d), and delayed degradation of chlorophylls. The same treatment also enhanced the concentration of soluble carbohydrates in the petals and stems and leaf chlorophyll (Chl) content, whereas it was lowest in silver thiosulphate (STS) treatment. However, concentrations of anthocyanin in the petals were higher for treatment with sucrose or STS plus sucrose than in control or STS alone treatments. Our results suggest that pulse treatment with HQS plus sucrose for 12 h is the most effective for improving pigmentation and use as a commercial cut flower preservative solution to delay flower senescence, enhance quality, and prolong the vase life of sweet pea. The results also showed that soluble carbohydrate concentration in petals and stems is an important factor in determining the vase life of sweet pea flowers., K. M. Elhindi., and Obsahuje bibliografii