Impaired calcium homeostasis and altered expression of Ca2+-binding proteins are associated with cardiomyopathies, myocardial hypertrophy, infarction or ischemia. S100A1 protein with its modulatory effect on different target proteins has been proposed as one of potential candidates which could participate in these pathological processes. The exact localization of S100A1 in human heart cells on the ultrastructural level accompanied with biochemical determination of its target proteins may help clarify the role of S100A1 in heart muscle. In the present study the distribution of the S100A1 protein using postembedding (Lowicryl K4M) immunocytochemical method in human heart muscle has been determined quantitatively, relating number of antigen sites to the unit area of a respective structural component. S100A1 antigen sites have been detected in elements of sarcoplasmic reticulum (SR), in myofibrils at all levels of sarcomere and in mitochondria, the density of immunolabeling at Z-lines being about 3 times and at SR more than 5 times higher than immunolabeling of remaining structural components. The presence of the S100A1 in SR and myofibrils may be related to the known target proteins for S100A1 at these sites., B. Maco, A. Mandinová, M.B. Dürrenberger, B.W. Schäfer, B. Uhrík, C.W. Heizmann., and Obsahuje bibliografii
Endogenous development of Choleoeimeria rochalimai (Carini et Pinto, 1926) Lainson et Paperna, 1999 in the gall bladder of Hemidactylus mabouia (Moreau de Jonnes, 1818) front Belem, Brazil is reported at the fine structural level. Meronts and gamonts develop in the epithelial cells of the gall bladder. Infected cells become enlarged and displaced above the epithelial layer. Developing merozoites, dividing meronts and succession of developing microgamonts from initial nuclear division up to final microgamete differentiation are described. In addition to wall forming bodies, mature macrogamonts possess a large inclusion or cisterna with fine granular contents.
The ultrastructure of the endogenous stages - merozoites, microgamonts, macrogamonts and oocysts, of Sarcocystis muriviperae from the snakes Vipera palaestinae and Coluber jugularis is described. Snakes were infected via white mice fed on sporocysts obtained from naturally infected snakes of the same species. Snakes examined 4 days post-infection contained only young and premature gamonts. Infection in snakes sacrificed on day 7 post-infection consisted predominantly of mature microgamonts and macrogamonts; snakes examined on day 10 post-infection revealed only oocysts. The fine structure of the endogenous stages from the two snakes, including size and contents of the wall-forming bodies, was identical, confirming their suggested conspecificity. Observed endogenous stages also conformed in their major details with the same developmental stages of other Sarcocystis species studied from other snakes and mammalian definitive hosts and from in vitro culture. However, they differed from the latter in size and contents of the wall-forming bodies. The observed fertilization process was reminiscent of that described earlier in S. bovicanis.
In Prorhinotermes simplex, tergal glands are present on the last three tergites (from the 8th to the 10th) in imagoes of both sexes. In addition, males possess posterior sternal glands of the same structure on sternites 8 and 9. The tergal and the posterior sternal glands consist of four cell types: class 1 and class 2 secretory cells, and class 3 cells with corresponding canal cells. The cytoplasm of class 1 cells contains smooth endoplasmic reticulum, elongated mitochondria and numerous microtubules. Apical parts of these cells are formed by dense and long microvilli with a central ductule. Class 2 cells contain predominantly lucent vacuoles (in females) or lipid droplets (in males). The structure of class 3 cells does not differ from class 3 cells found in other body parts.
The ultrastructure and chemical composition of the proboscis hooks and surrounding tegument of Acanthocephalus lucii (Müller, 1776), a parasite of European perch, Perca fluviatilis Linnaeus, were examined using scanning (SEM) and transmission (TEM) electron microscopy and X-ray microanalysis (EDXA). The blade of middle hooks consists of three layers: an outer homogeneous layer, an inner heterogeneous layer and a central core. TEM observation revealed the presence of hollow tubes, which spaced the central core; fibrous inner hook layer surrounded by an electron-dense margin and the basal tegumental layer filled with electron-dense bodies and outer layer. We found for the first time that the so-called ''epidermal covering'' surrounding of the exposed hook blade (outer hook layer) is a modified striped portion of the tegumental layer and there are no special contact sites between these two morphologically different structures, i.e. striped layer of the syncytial tegument and following proper outer hook layer, which is a homogeneous, moderately electron-dense layer of ~0.3 µm in thickness. The hook root is embedded into subtegumental fibrous layer. X-ray microanalysis of both the surface and internal parts of A. lucii hooks demonstrated the presence of calcium, magnesium, phosphorus and sulphur. The highest concentration of sulphur was recorded at the tip of hooks, whereas the middle part of the hooks was most rich in calcium, phosphorus and magnesium. The proximal part of the hooks contained lower concentrations of sulphur, calcium and phosphorus. In the proboscis tegument, only two elements, calcium and silicon, were found. The differences observed in the chemical composition of the hook ''epidermal covering'' and the proboscis tegument support our ultrastructural findings that the hook tegumental covering is a modified structure compared with that of the general proboscis tegument.
Influence of moderate chilling stress on vascular bundle sheath cell (BSC) and especially mesophyll cell (MC) chloroplasts of mature maize leaves was studied by electron microscopy and stereology. Plants of two inbred lines of maize, differing in their photosynthetic activity, and their F1 hybrids were cultivated during autumn in heated or unheated glasshouse. Generally, chilling temperatures resulted mainly in the decrease in stereological volume density (VD) of both granal and intergranal thylakoids of MC chloroplasts, while the ratio of granal to all thylakoids (granality) was less affected. The VD of peripheral reticulum and plastoglobuli usually increased after cold treatment of plants. The volume of MC chloroplasts usually increased under chilling stress, the shape of the chloroplasts changed only slightly. The ultra-structure of chloroplasts differed between individual genotypes; chilling-stressed hybrid plants showed positive heterosis particularly in the granal thylakoids' VD of MC chloroplasts. and J. Kutík ... [et al.].
Data on external ultrastructure of myxospores and internal ultrastructure of advanced pseudoplasmodia and myxospores of topotypic samples of Sphaerospora ranae (Morelle, 1929) from Rana dalmatina Bonaparte are provided, together with in situ hybridisation results. In both frogs examined, the infection was restricted to renal tubules and corpuscles. The infection site restriction was confirmed by light and transmission electron microscopy, as well as by in situ hybridisation. In addition, large myxospore masses measuring up to 500 μm were detected in seminal vesicles. Only late-sporogonic stages, i.e. pseudoplasmodia harbouring immature and/or mature myxospores, were observed and analysed. Scanning electron microscopy revealed that spores have smooth surface with exception of posterior valvular bulges, which possess numerous outwards opening internal canals. As revealed by both scanning and transmission electron microscopy, the canals are continuous invaginations of the outer spore surface. Myxospores of S. ranae are characterised by the presence of two uninucleate sporoplasms, bilayered polar capsules, S/H-shaped polar filaments in transversal section and multilayered polar filament eversion pole plugging complex. Ultrastructural observations are discussed in the context of available data for other species of Sphaerospora sensu stricto and apparent synchronisation of myxospore shedding with a brief aquatic breeding phase of vertebrate intermediate host is highlighted.
Four new species of monoxenous kinetoplastid parasites are described from Brachycera flies, namely Wallaceina raviniae Votýpka et Lukeš, 2014 and Crithidia otongatchiensis Votýpka et Lukeš, 2014 from Ecuador, Leptomonas moramango Votýpka et Lukeš, 2014 from Madagascar, and Crithidia pragensis Votýpka, Klepetková et Lukeš, 2014 from the Czech Republic. The new species are described here based on sequence analysis of their spliced leader (SL) RNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and small subunit (SSU) rRNA genes, as well as their morphology and ultrastructure. High-pressure freezing and Bernhard's EDTA regressive staining, used for the first time for monoxenous (one host) trypanosomatids, revealed the presence of viral particles with cytosolic localization in one and unique mitochondrial localization in another species. In accordance with previous observations, our results emphasize a discrepancy between morphology and molecular taxonomy of the family Trypanosomatidae. All four newly described species are represented by typical morphotypes (mainly choano- and promastigotes) and are virtually indistinguishable from other monoxenous trypanosomatids by morphology. Nevertheless, they all differ in their phylogenetic affinities. Whereas three of them grouped within the recently defined subfamily Leishmaniinae, which includes numerous representatives of the genera Leishmania Ross, 1903, Crithidia Léger, 1902 and Leptomonas Kent, 1880, the fourth species clusters together with the ''collosoma'' clade (named after ''Leptomonas'' collosoma Wallace, Clark, Dyer et Collins, 1960). Here we demonstrate that the ''collosoma'' group represents the elusive genus Wallaceina Podlipaev, Frolov et Kolesnikov, 1999. We redefine this genus in molecular terms based on similarities of the respective molecular markers and propose to use this taxon name for the group of species of the ''collosoma'' clade.
A new microsporidian species of the genus Glugea Thélohan, 1891 parasitising the marine teleost fish Cephalopholis hemistiktos Rüppell, collected from the Red Sea in Saudi Arabia, is described on the basis of microscopic and molecular procedures. Spherical and whitish xenoma were observed adhering to the intestinal wall. The numerous spores contained within these xenoma, were ovoid to pyriform and measured 4.3-6.0 µm (5.1 µm) in length and 1.8-2.9 µm (2.2 µm) in width. The spore's wall was composed of two thick layers, which were thinner in the area contacting the anchoring disk. The latter appeared at the spore's anterior pole, in an eccentric position to the longitudinal axis. A lamellar polaroplast surrounded the uncoiled portion of the polar filament projected to the basal region of the spore, giving rise to 26-29 turns with winding from the base to the anterior zone of the spore. The posterior vacuole, located at the spore's posterior pole, and surrounded by the polar filament coils, was irregular and composed of light material. Molecular analysis of the rRNA genes, including the ITS region, was performed using maximum parsimony, neighbour-joining and maximum likelihood methods. The ultrastructural features observed, combined with the phylogenetic data analysed, suggest this parasite to be a new species of the genus Glugea. This is the first species of this genus to be reported from Saudi Arabia and is herein named Glugea nagelia sp. n., Abdel-Azeem S. Abdel-Baki, Saleh Al-Quraishy, Sónia Rocha, Mohamed A. Dkhil, Graça Casal, Carlos Azevedo., and Obsahuje bibliografii
Ultrastructural characteristics of progenetic and monoxenic Archigetes sieboldi Leuckart, 1878 from the oligochaete Limnodrilus hoffmeisteri Claparède are described. Our observations demonstrate that progenetic Archigetes sieboldi shares characteristics of both larval (progenetic) and adult stages. The primary larval characteristics are: the presence of a cercomer; a surface filamentous coat covering the whole worm; the presence of the penetration glands and the absence of tegumental ones; wide sarcoplasmic processes connecting the circular and longitudinal external tegumental muscles; the absence of the dense homogenous zone of the basal lamina beneath the epithelial cytoplasm of all reproductive organs and ducts; non-functional gonopores; and an orthogonal plan of nervous system with three pairs of longitudinal nerve trunks. The principle adult characteristics are: oogenesis, spermiogenesis and vitellogenesis that produce fertilized eggs; the uterine glands; a well-developed longitudinal tegumental muscle layer between tegumental cytons; and the presence of different microtriches. As a result of this progenetic development there has been a secondary reduction in the life cycle of A. sieboldi. It is postulated that a similar process of progenesis may have played a major role in the early evolution of the Caryophyllidea by first appearing in a plerocercoid stage of an ancestral strobilate cestode from fish.