Trailer for Eva tropí hlouposti (Eva Fools Around, dir. Martin Frič, 1939). Actresses Nataša Gollová and Adina Mandlová in Šťastnou cestu (Happy Journey, dir. Otakar Vávra, 1943).
Netgraph is a graphically oriented client-server application for searching in linguistically annotated treebanks. The query language of Netgraph is simple and intuitive, yet powerful enough for treebanks with complex annotations schemes. The primary purpose of Netgraph is searching in the Prague Dependency Treebank 2.0, nevertheless it can be used for other treebanks as well.
NomVallex 2.0 is a manually annotated valency lexicon of Czech nouns and adjectives, created in the theoretical framework of the Functional Generative Description and based on corpus data (the SYN series of corpora from the Czech National Corpus and the Araneum Bohemicum Maximum corpus). In total, NomVallex is comprised of 1027 lexical units contained in 570 lexemes, covering the following parts-of-speech and derivational categories: deverbal or deadjectival nouns, and deverbal, denominal, deadjectival or primary adjectives. Valency properties of a lexical unit are captured in a valency frame (modeled as a sequence of valency slots, each supplemented with a list of morphemic forms) and documented by corpus examples. In order to make it possible to study the relationship between valency behavior of base words and their derivatives, lexical units of nouns and adjectives in NomVallex are linked to their respective base lexical units (contained either in NomVallex itself or, in case of verbs, in the VALLEX lexicon), linking up to three parts-of-speech (i.e., noun – verb, adjective – verb, noun – adjective, and noun – adjective – verb).
In order to facilitate comparison, this submission also contains abbreviated entries of the base verbs of these nouns and adjectives from the VALLEX lexicon and simplified entries of the covered nouns and adjectives from the PDT-Vallex lexicon.
The NomVallex I. lexicon describes valency of Czech deverbal nouns belonging to three semantic classes, i.e. Communication (dotaz 'question'), Mental Action (plán 'plan') and Psych State (nenávist 'hatred'). It covers both stem-nominals and root-nominals (dotazování se 'asking' and dotaz 'question'). In total, the lexicon includes 505 lexical units in 248 lexemes. Valency properties are captured in the form of valency frames, specifying valency slots and their morphemic forms, and are exemplified by corpus examples.
In order to facilitate comparison, this submission also contains abbreviated entries of the source verbs of these nouns from the Vallex lexicon and simplified entries of the covered nouns from the PDT-Vallex lexicon.
The NottDeuYTSch corpus contains over 33 million words taken from approximately 3 million YouTube comments from videos published between 2008 to 2018 targeted at a young, German-speaking demographic and represents an authentic language snapshot of young German speakers. The corpus was proportionally sampled based on video category and year from a database of 112 popular German-speaking YouTube channels in the DACH region for optimal representativeness and balance and contains a considerable amount of associated metadata for each comment that enable further longitudinal cross-sectional analyses.
The NottDeuYTSch corpus contains over 33 million words taken from approximately 3 million YouTube comments from videos published between 2008 to 2018 targeted at a young, German-speaking demographic and represents an authentic language snapshot of young German speakers. The corpus was proportionally sampled based on video category and year from a database of 112 popular German-speaking YouTube channels in the DACH region for optimal representativeness and balance and contains a considerable amount of associated metadata for each comment that enable further longitudinal cross-sectional analyses.
OAGK is a keyword extraction/generation dataset consisting of 2.2 million abstracts, titles and keyword strings from cientific articles. Texts were lowercased and tokenized with Stanford CoreNLP tokenizer. No other preprocessing steps were applied in this release version. Dataset records (samples) are stored as JSON lines in each text file.
This data is derived from OAG data collection (https://aminer.org/open-academic-graph) which was released under ODC-BY licence.
This data (OAGK Keyword Generation Dataset) is released under CC-BY licence (https://creativecommons.org/licenses/by/4.0/).
If using it, please cite the following paper:
Çano, Erion and Bojar, Ondřej, 2019, Keyphrase Generation: A Text Summarization Struggle, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics, June 2019, Minneapolis, USA
OAGKX is a keyword extraction/generation dataset consisting of 22674436 abstracts, titles and keyword strings from scientific articles. The texts were lowercased and tokenized with Stanford CoreNLP tokenizer. No other preprocessing steps were applied in this release version. Dataset records (samples) are stored as JSON lines in each text file.
The data is derived from OAG data collection (https://aminer.org/open-academic-graph) which was released under ODC-BY license.
This data (OAGKX Keyword Generation Dataset) is released under CC-BY license (https://creativecommons.org/licenses/by/4.0/).
If using it, please cite the following paper:
Çano Erion, Bojar Ondřej. Keyphrase Generation: A Multi-Aspect Survey. FRUCT 2019, Proceedings of the 25th Conference of the Open Innovations Association FRUCT, Helsinki, Finland, Nov. 2019
To reproduce the experiments in the above paper, you can use the first 100000 lines of part_0_0.txt file.