En-Ru translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on newstest2020 (BLEU):
en->ru: 18.0
ru->en: 30.4
(Evaluated using multeval: https://github.com/jhclark/multeval)
Tree Editor
TrEd is a fully customizable and programmable graphical editor and viewer for tree-like structures. Among other projects, it was used as the main annotation tool for syntactical and tectogrammatical annotations in The Prague Dependency Treebank, as well as for decision-tree based morphological annotation of The Prague Arabic Dependency Treebank.
The datasets described in Droganova, Kira, and Daniel Zeman. "Towards a Unified Taxonomy of Deep Syntactic Relations." Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). 2024.
Four languages are included in this release. English PropBank is omitted due to its license terms.
The segment of Československý zvukový týdeník Aktualita (Czechoslovak Aktualita Sound Newsreel), 1938, issue no. 43 offers an insight into the lives of Czech railway workers in the aftermath of the Sudetenland annexation after they find makeshift shelter in decommissioned railway carriages in the Posázaví region. The footage also shows railway workers from Obrnice u Mostu living in railway carriages.
Pretrained model weights for the UDify model, and extracted BERT weights in pytorch-transformers format. Note that these weights slightly differ from those used in the paper.
UDPipe is an trainable pipeline for tokenization, tagging, lemmatization and dependency parsing of CoNLL-U files. UDPipe is language-agnostic and can be trained given only annotated data in CoNLL-U format. Trained models are provided for nearly all UD treebanks. UDPipe is available as a binary, as a library for C++, Python, Perl, Java, C#, and as a web service.
UDPipe is a free software under Mozilla Public License 2.0 (http://www.mozilla.org/MPL/2.0/) and the linguistic models are free for non-commercial use and distributed under CC BY-NC-SA (http://creativecommons.org/licenses/by-nc-sa/4.0/) license, although for some models the original data used to create the model may impose additional licensing conditions. UDPipe is versioned using Semantic Versioning (http://semver.org/).
UDPipe website http://ufal.mff.cuni.cz/udpipe contains download links of both the released packages and trained models, hosts documentation and offers online demo.
UDPipe development repository http://github.com/ufal/udpipe is hosted on GitHub.
This is the first release of the UFAL Parallel Corpus of North Levantine, compiled by the Institute of Formal and Applied Linguistics (ÚFAL) at Charles University within the Welcome project (https://welcome-h2020.eu/). The corpus consists of 120,600 multiparallel sentences in English, French, German, Greek, Spanish, and Standard Arabic selected from the OpenSubtitles2018 corpus [1] and manually translated into the North Levantine Arabic language. The corpus was created for the purpose of training machine translation for North Levantine and the other languages.
The corpus contains recordings by the native speakers of the North Levantine Arabic (apc) acquired during 2020, 2021, and 2023 in Prague, Paris, Kabardia, and St. Petersburg. Altogether, there were 13 speakers (9 male and 4 female, aged 1x 15-20, 7x 20-30, 4x 30-40, and 1x 40-50).
The recordings contain both monologues and dialogues on the topics of everyday life (health, education, family life, sports, culture) as well as information on both host countries (living abroad) and country of origin (Syria traditions, education system, etc.). Both types are spontaneous, the participants were given only the general subject and talked on the topic or discussed it freely. The transcription and translation team consisted of students of Arabic at Charles University, with an additional quality check provided by the native speakers of the dialect.
The textual data is split between the (parallel) transcriptions (.apc) and translations (.eng), with one segment per line. The additional .yaml file provides mapping to the corresponding audio file (with the duration and offset in the "%S.%03d" format, i.e., seconds and milliseconds) and a unique speaker ID.
The audio data is shared in the 48kHz .wav format, with dialogues and monologues in separate folders. All of the recordings are mono, with a single channel. For dialogues, there is a separate file for each speaker, e.g., "Tar_13052022_Czechia-01.wav" and "Tar_13052022_Czechia-02.wav".
The data provided in this repository corresponds to the validation split of the dialectal Arabic to English shared task hosted at the 21st edition of the International Conference on Spoken Language Translation, i.e., IWSLT 2024.
The corpus contains recordings by the native speakers of the North Levantine Arabic (apc) acquired during 2020, 2021, and 2023 in Prague, Paris, Kabardia, and St. Petersburg. Altogether, there were 13 speakers (9 male and 4 female, aged 1x 15-20, 7x 20-30, 4x 30-40, and 1x 40-50).
The recordings contain both monologues and dialogues on the topics of everyday life (health, education, family life, sports, culture) as well as information on both host countries (living abroad) and country of origin (Syria traditions, education system, etc.). Both types are spontaneous, the participants were given only the general subject and talked on the topic or discussed it freely. The transcription and translation team consisted of students of Arabic at Charles University, with an additional quality check provided by the native speakers of the dialect.
The textual data is split between the (parallel) transcriptions (.apc) and translations (.eng), with one segment per line. The additional .yaml file provides mapping to the corresponding audio file (with the duration and offset in the "%S.%03d" format, i.e., seconds and milliseconds) and a unique speaker ID.
The audio data is shared in the 48kHz .wav format, with dialogues and monologues in separate folders. All of the recordings are mono, with a single channel. For dialogues, there is a separate file for each speaker, e.g., "16072022_Family-01.wav" and "16072022_Family-02.wav".
The data provided in this repository corresponds to the test split of the dialectal Arabic to English shared task hosted at the 21st edition of the International Conference on Spoken Language Translation, i.e., IWSLT 2024.
Data from a questionnaire survey conducted from 2022-08-25 to 2022-11-15 and exploring the use of machine translation by Ukrainian refugees in the Czech Republic. The presented spreadsheet contains minimally processed data exported from the two questionnaires that were created in Google Forms in the Ukrainian and the Russian language. The links to these questionnaires were distributed by three methods: direct email to particular refugees whose contact details the authors obtained while volunteering; through a non-profit organisation helping refugees (Vesna women’s education institution) and on social networks by posting links to the survey in groups associating the Ukrainian community across Czech regions and towns.
Since we asked potential respondents to spread the questionnaire further, we could not prevent it from reaching Ukrainians who had arrived in Czechia previously, or received temporary protection in other countries. Due to this fact, the textual answers to the question 1.5 "Which country are you in right now?" were replaced in the dataset by numbers (1 for Czech Republic, 2 for other countries) in order for us to be able to separate the data of respondents not located in the Czech Republic, which were irrelevant for our survey.