Dnešní terestrické ekosystémy jsou do značné míry produktem koevoluce rostlin a hmyzu, který představuje vůbec nejpočetnější a nejrozmanitější skupinu živočichů. Počátky tohoto vzájemného působení lze vysledovat stovky milionů let do minulosti, přičemž postupně docházelo k nárůstu jeho komplexity. Nejčastějšími doklady těchto složitých vztahů jsou fosilizované listy nebo jejich otisky, vykazující často specifické i nespecifické poškození, jako jsou miny nebo hálky, stopy po ovipozici, popřípadě nejrůznější typy okusů. Kvalitativní a kvantitativní analýza těchto stop má velký význam při studiu evolučních procesů v rámci výše uvedených skupin organismů. Detekované změny v dynamice trofických vztahů mezi hmyzem a jeho rostlinnými hostiteli pomáhají zpřesnit představu o vlivu měnícího se prostředí na okolní biotu, jakož i poskytují vodítko pro stanovování průběhu klimatických změn v čase., Contemporary terrestrial ecosystems are largely a product of the coevolution of plants and insects, which are the most prevalent and diverse group of animals. The origin of these interactions can be traced hundreds of millions of years back followed by a gradual increase in their complexity. The most common evidence of these complex relationships is represented by the fossilized leaves, often having specific and non-specific damage such as the mines, galls, traces of oviposition, or various types of feeding. Qualitative and quantitative analyses of these ichnofossils are of great importance with regard to the study of the evolutionary processes occurring among these groups of organisms. The detected changes in the dynamics of trophic relationships between insects and their host plants help to clarify ideas regarding the impact on the developing environment and organisms, and provide evidence for the recognition of trends in climate changes in the past., and Stanislav Knor, Jakub Prokop.
Článek přináší přehled současných znalostí o fylogenezi mnohobuněčných živočichů, tak jak vycházejí ze současného fylogenomického výzkumu. Zvláštní pozornost je věnována skupinám s konfliktním postavením (Ctenophora, Xenacoelomorpha, Bryozoa) a skupinám, o jejichž postavení dosud nevíme téměř nic (Dendrogramma, Dicyemida, Orthonectida)., We present an overview of current knowledge on the phylogeny of multicellular animals, based on current phylogenomic research. This overview pays special attention to groups with uncertain positions (Ctenophora, Xenacoelomorpha, Bryozoa) and groups whose position is still largely unknown (Dendrogramma, Dicyemida, Orthonectida)., and Jan Zrzavý.
Both molecular and palaeoecological methods enable us to study past changes in plant distribution. The results of recent phylogeographical studies have demonstrated that Central Europe was not only at a crossroads of postglacial migration routes, but also an area where many species might have survived during glacial periods. and Tomáš Fér, Karol Marhold.
Od dob, kdy Galileo Galilei položil základy matematického popisu přirozených procesů, musela fyzika projít ještě složitou cestu, než zacílila se vší vážností a energií tento popis na živé organismy. Neobyčejně smělý rozvrh Reného Descarta, jehož matematicky chápaná rozprostraněnost zahrnovala i živé organismy jakožto mechanismy podléhající stejným zákonům jako cokoli neživého, ovšem nenabízel žádnou cestu, jak fyziku systematicky provozovat. Tuto cestu vytyčil až Isaac Newton. Jeho program průzkumu fyzikální reality je však založen na zkoumání pohybů a hledání sil, které tyto pohyby odchylují od pohybu rovnoměrného a přímočarého. V tomto pojetí se tak živé organismy jeví jako prakticky nepřístupné nějakému fyzikálnímu průzkumu. Pojem pohybu chápaného jako geometrická trajektorie zde ztrácí svůj zásadní význam (je řada jiných podstatných "pohybů", jako růst či rozmanité změny vnitřní struktury) a pojem síly se stává problematickým (jaké "síly" zastaví pohybující se myš?). Až ve dvacátém století se fyzika začala vážně a systematicky zabývat i živými strukturami. Bylo to zejména díky rozvoji termodynamiky, molekulární fyziky, počítačových simulací a vysoce sofistikovaných experimentálních a zobrazovacích metod., The paper deals with living matter (living tissues and individual cells) from the point of view of physics. It passes through several upůto-date approaches that are clearly physical. Starting with thermodynamics that brings us to study the free-energy dependence on microscopic parameters of living tissues, we continue with special mechanical properties of living cells and the important role of pre-stress in their "skeleton". We mention the "tensegrity approach" and review briefly the approach in which a cell is understood as a soft glassy material. Then we discuss problems of description and experimental identification of properties of living tissues and present an example outlining a pure mechanical explanation how smooth muscle cells may efficiently control mechanical behaviour of the whole tissue. The concluding discussion tries to elucidate the role of physics in understanding the secret of life., Miroslav Holeček, Petra Kochová, Zbyněk Tonar., and Obsahuje bibliografii