V roku 1948 holandský fyzik H. B. G. Casimir navrhol špeciálne experimentálne zariadenie, ktoré spočívalo v dvojici rovnobežných vodivých platní, pričom každá z platní bola elektricky neutrálna. Casimir vypočítal, že zmena vákuovej energie elektromagnetického poĺa spôsobená prítomnosťou platní se prejavuje ako makroskopická príťažlivá sila medzi platňami. Ďalšie štúdie zovšeobecnili, v rámci štandardnej rovnovážnej štatistickej a kvantovej mechaniky aplikovanej na makroskopickú elektrodynamiku, odvodenie príťažlivej Casimirovej sily na nenulovú teplotu T > 0, prípad všeobecných platní vyrobených z dielektrického materiálu a rôzné geometrie experimentálnych zariadení. Časom sa ukázalo, že v dosiahnutých výsledkoch je nesúlad a množstvo kontroverzií. Nesúlad výsledkov sa najmarkantnejšie prejavuje v oblasti vysokých teplôt. Cieĺom prezentovaného článku je poskytnúť stručný prehĺad vývoja Casimirovho problému a jeho kontroverzií v matematicky prístupnej forme, ako aj autorov príspevok pri objasnení vysokoteplotných aspektov elektromagnetického Casimirovho javu., Ladislav Šamaj., and Obsahuje seznam literatury
Článek představuje elektronovou mikroskopii jako vhodný zdroj inspirace při výuce fyziky na střední škole. Na konkrétních příkladech vysvětluje základní fyzikální principy těchto (složitých) přístrojů. V současnosti se elektronová mikroskopie rychle rozvíjí a její zařazení do učebnic fyziky je dle autorů článku velmi žádoucí., This article presents electron microscopy as a suitable source of inspiration for teaching physics at secondary school. We use examples to explain the basic physical principles of these sophisticated devices. Today, electron microscopy is developing rapidly, and its inclusion in physics textbooks is highly desirable., and Petr Vencelides, Jana Jurmanová.
The article presents electron microscopy as a suitable source of inspiration for teaching physics at secondary school. Some specific examples explain the basic physical principles of these (sophisticated) devices. Today, electron microscopy is developing rapidly, and its inclusion in physics textbooks is highly desirable., Petr Vencelides, Jana Jurmanová., and Obsahuje bibliografické odkazy
This paper is a continuation of the first part [M. Lenc: „Electron waves and crystal lattices: part one - theory“, Čs. čas. fyz. 64, 99-103 (2014)], where we have given some remarks to the foundation of Schrödinger‘s wave mechanics. One of the first proofs of the new theory are experiments studying the diffraction of low and high energy electrons in crystal lattices. In detail we analyse the first pitfalls of the interpretation of the Davisson-Germer diffraction experiment with low energy electrons, which was more difficult than the Thomson‘s diffraction experiment with high energy electrons. Davisson and Thomson were in 1937 awarded by the Nobel prize., Michal Lenc., and Obsahuje bibliografii
V článku uvedeme několik poznámek k začátkům Schrödingerovy vlnové mechaniky, jejíž první výsledky byly pak ověřovány experimenty s difrakcí pomalých i rychlých elektronů na krystalových mřížkách. Ponecháváme tak stranou aplikace ve spektroskopii které možná byly pro prvotní přijetí kvantové teorie důležitější. V každém případě bylo brzké ověření de Broglieho vztahu mezi vlnovou délkou a hybností elektronu neobyčejně významné (a oceněno třemi Nobelovými cenami). Článek je věnován prof. RNDr. Martinu Černohorskému, CSc. k jeho významnému životnímu výročí., Michal Lenc., and Obsahuje seznam literatury
Rychle postupující miniaturizace v elektronice vyžaduje nové přístupy, a to nejen v technologii umožňující vytvářet nanometrové a subnanometrové objekty, ale též v jejich charakterizaci. EMCD - elektronový magnetický cirkulární dichroismus, je nová metoda, která používá transmisního elektronového mikroskopu k určení magnetických momentů atomů, ze kterých zkoumaný objekt sestává. V současné době je rozlišení EMCD lepší než 10 nm s potenciálem subnanometrového rozlišení. Metoda dovoluje oddělit spinový a orbitální příspěvek k magnetickému momentu., Ján Rusz, Pavel Novák., Úvod a závěr, vč. abstrakt, je v češtině, and Obsahuje seznam literatury
Elektronový mikroskop, přestože se zdá mít nejlepší léta za sebou, je přístrojem, jehož vývoj nekončí. Bilance jeho uplatnění je pozoruhodná. Tisíce, ne-li desetitisíce publikací jeho přičiněním dosažených nemají konkurenci. V současné době neexistuje přístroj, který by měl takové rezervy. Elektronový mikroskop stojí před novou vývojovou etapou. Zdá se, že se našly technické prostředky, jak posunout jeho parametry, zejména rozlišovací schopnost, výrazně kupředu. Nejnovější technologie na nanometrové úrovni slibují materiály, které nemají v současné době obdobu, studium biologických objektů na submolekulární úrovni přinese poznatky o jejich funkci. Elektronové mikroskopy nové generace budou moci významně k dosažení uvedených dílů přispět., Armin Delong., and Obsahuje seznam literatury
The first author, a high-school student, together with the second author, a project supervisor, presents a simple model of the solidification of liquid wax poured into a cylindrical vessel. The results obtained with the model are tested in a series of experiments carried out inside cylindrical containers of different dimensions. There is a good agreement achieved between theory and experiment. The main goal of this project is to identify and investigate a physical phenomenon which would test and enhance students‘ creativity., Karolína Rezková, Jana Musilová., and Obsahuje seznam literatury