Some relationships between the vector valued Henstock and McShane integrals are investigated. An integral for vector valued functions, defined by means of partitions of the unity (the PU-integral) is studied. In particular it is shown that a vector valued function is McShane integrable if and only if it is both Pettis and PU-integrable. Convergence theorems for the Henstock variational and the PU integrals are stated. The families of multipliers for the Henstock and the Henstock variational integrals of vector valued functions are characterized.
At maturity, the endoparasitoid larvae of several subfamilies of the Braconidae have to emerge from inside of the host to pupate. Although the hosts hormonal milieu and the timing of larval parasitoid emergence have been studied, no report has yet focused on the physiological state of the host in connection with the emergence behavior of endoparasitoids. We investigated the mechanism of larval emergence behavior in a gregarious endoparasitoid, Cotesia kariyai. The parasitoid larvae inserted their mandibles into the host cuticle and perforated the integument by moving their head-capsule backwards and forwards. The emerging parasitoid larva must have a physical support (an "anchor") with the terminal appendages in order to exert the necessary pressure to cut the host integument. Morphological observations revealed that each parasitoid larva was enveloped in a capsule just before emerging from their host. Eight and nine day-old parasitoid larvae secreted material around their bodies to form these capsules. This material consisted of acid-glycoproteins which coated the exuvium of the 2nd instar larvae. The haemolymph volume of the parasitised host also decreased in later stages and was dramatically reduced immediatly prior to parasitoid emergence. This final reduction of the host haemolymph volume is the result of absorption by parasitoid larvae. This mechanism allows the parasitoid larvae to create an anchor more easily. The parasitoid larvae could also adhere to each other with the glycoprotein. In addition, these capsules prevent the leaking of host haemolymph through the emergence hole; these holes on the host integument were plugged by the capsules after parasitoid emergence. Although the pressure acquired by the anchor was lost once the head of the parasitoid larvae emerges from the host integument, the parasitoid larvae crawls out of the host cavity using backward pointing spines which enable the parasitoid to grip the capsule and move forward via peristaltic contractions.
The fundamental biochemical processes of 5-methylcytosine (5-mC) synthesis, maintenance, conversion and removal determine the time and spatial pattern of DNA methylation. This has a strong effect on a plethora of physiological aspects of cellular metabolism. While the presence of 5-mC within the promoter region can silence gene expression, its derivative - 5-hydroxymethylcytosine exerts an opposite effect. Dysregulations in the metabolism of 5-mC lead to an altered DNA methylation pattern which is linked with a disrupted epigenome, and are considered to play a significant part in the etiology of several human diseases. A summary of recent knowledge about the molecular processes participating in DNA methylation pattern shaping is provided here., R. Murín, M. Abdalla, N. Murínová, J. Hatok, D. Dobrota., and Obsahuje bibliografii
Each of the Diophantine equations $A^4 \pm nB^3 = C^2$ has an infinite number of integral solutions $(A, B, C)$ for any positive integer $n$. In this paper, we will show how the method of infinite ascent could be applied to generate these solutions. We will investigate the conditions when $A$, $B$ and $C$ are pair-wise co-prime. As a side result of this investigation, we will show a method of generating an infinite number of co-prime integral solutions $(A, B, C)$ of the Diophantine equation $aA^3 + cB^3 = C^2$ for any co-prime integer pair $(a,c)$.
In this paper we develop the monotone method in the presence of upper and lower solutions for the $2$nd order Lidstone boundary value problem \[ u^{(2n)}(t)=f(t,u(t),u^{\prime \prime }(t),\dots ,u^{(2(n-1))}(t)),\quad 0<t<1, u^{(2i)}(0)=u^{(2i)}(1)=0,\quad 0\le i\le n-1, \] where $f\:[0,1]\times \mathbb{R}^{n}\rightarrow \mathbb{R}$ is continuous. We obtain sufficient conditions on $f$ to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem.
Exposed Riverine Sediments (ERS) are often characterised by a high diversity of microhabitats due to strong lateral gradients in temperature, humidity, inundation frequency and availability of aquatic food resources and to variations in the degree of vegetation cover, sediment size and sorting. This variation, potentially in combination with interspecific competitive interactions, is thought to drive the microspatial distribution of ERS invertebrates. This research investigated the microspatial distribution of six ERS specialist beetles across three discreet patches of ERS. In particular it examined the temporal stability of species distributions, and their spatial association with environmental variability and other species. The research used a grid of 204 modified dry pitfall traps over six sampling periods in which weather conditions and water levels were stable, and used the Spatial Analysis by Distance IndicEs (SADIE) method to test the significance of spatial distributions and associations. Strong and significant microspatial zonation was observed for all species, and with few exceptions these distributions were remarkably stable across the study period. This zonation was mainly associated with elevation and proximity to the water, and several species were consistently spatially associated or disassociated with one another. This suggests that laterally more extensive patches of ERS support more species. Operations that reduce the size of ERS patches, such as channelisation, aggregate extraction and regulation are therefore likely to reduce ERS invertebrate diversity.
Companion animals can be infested by various species of parasitic insects. Cat flea Ctenocephalides felis (C. felis felis) (Bouché, 1835) and dog flea Ctenocephalides canis (Curtis, 1826) belong to multihost external parasites of mammals, which most frequently occur on domestic cats Felis catus Linnaeus and dogs Canis familiaris Linnaeus. The main aim of this study was to investigate the presence of pathogens, such as Anaplasma phagocytophilum (syn. Ehrlichia phagocytophila) and Rickettsia spp., in adult C. felis and C. canis fleas. Flea sampling has been realised from January 2013 to April 2017 in veterinary clinics, animal shelters and pet grooming salons. Fleas were collected from domestic cats and dogs, directly from the pet skin or hair. Then, the DNA was isolated from a single flea by using the alkaline hydrolysis and samples were screened for the presence of pathogens using PCR method. Anaplasma phagocytophilum has occurred in 29% of examined C. felis and 16% of C. canis individuals. In turn, the prevalence of Rickettsia spp. in cat fleas population was only 3%, and the dog fleas 7%. The present study showed the presence of pathogenic agents in cat and dog fleas, which indicates the potential role of these insects in circulation of A. phagocytophilum and Rickettsia spp. in the natural habitat. Furthermore, exposition to these flea species, whose hosts are domestic cats and dogs, can pose a potential risk of infection for humans.
Familial hypercholesterolemia (FH) is most frequently caused by LDLR or APOB mutations. Therefore, the aim of our study was to examine the genetic background of Slovak patients suspected of FH. Patients with clinical suspicion of FH (235 unrelated probands and 124 family relatives) were recruited throughout Slovakia during the years 2011-2015. The order of DNA analyses in probands was as follows: 1. APOB mutation p.Arg3527Gln by real-time PCR method, 2. direct sequencing of the LDLR gene 3. MLPA analysis of the LDLR gene. We have identified 14 probands and 2 relatives with an APOB mutation p.Arg3527Gln, and 89 probands and 75 relatives with 54 different LDLR mutations. Nine of LDLR mutations were novel (i.e. p .Asp90Glu, c.314-2A>G, p.Asp136Tyr, p.Ser177Pro, p.Lys225_Glu228delinsCysLys, p.Gly478Glu, p.Gly675Trpfs*42, p.Leu680Pro, p.Thr832Argfs*3). This is the first study on molecular genetics of FH in Slovakia encompassing the analysis of whole LDLR gene. Geneti c etiology of FH was confirmed in 103 probands (43.8 %). Out of them, 86.4 % of probands carried the LDLR gene mutation and remaining 13.6 % probands carried the p.Arg3527Gln APOB mutation., D. Gabčová, B. Vohnout, D. Staníková, M. Hučkova, M. Kadurová, M. Debreová, M. Kozárová, Ľ. Fábryová, Slovak FH Study Group, J. Staník, I. Klimeš, K. Rašlová, D. Gašperiková., and Obsahuje bibliografii
Skeletal muscle atrophy is associated with a loss of muscle protein which may result from both increased proteolysis and decreased protein synthesis. Investigations on cell signaling pathways that regulate muscle atrophy have promoted our understanding of this complicated process. Emerging evidence implicates that calpains play key roles in dysregulation of proteolysis seen in muscle atrophy. Moreover, studies have also shown that abnormally activated calpain
results muscle atrophy via its downstream effects on ubiquitin proteasome pathway (UPP) and Akt phosphorylation. This review will discuss the role of calpains in regulation of skeletal muscle atrophy mainly focusing on its collaboration with either UPP or Akt in atrophy
conditions in hope to stimulate the interest in development of novel therapeutic interventions for skeletal muscle atrophy.