Vasoactive intestinal peptide (VIP) is a neuropeptide released from the autonomic nerves exerting multiple antiinflammatory effects. The aim of the present study was to investigate the impact of severe sepsis and hemofiltration in two settings on plasma and tissue concentrations of VIP in a porcine model of sepsis. Thirty-two pigs were di vided into 5 groups: 1) control group; 2) control group with conventional hemofiltration; 3) septic group; 4) septic group with conventional hemofiltration; 5) septic group with high-volume hemofiltration. Sepsis induced by faecal peritonitis continued for 22 hours. Hemofiltration was applied for the last 10 hours. Hemodynamic, inflammatory and oxidative stress parameters (heart rate, mean arterial pressure, cardiac output, systemic vascular resistance, plasma concentrations of tumor necrosis factor- α , interleukin-6, thiobarbituric acid reactive species, nitrate + nitrite, asymmetric dimethylarginine) and the systemic VIP concentrations were measured before faeces inoculation and at 12 and 22 hours of peritonitis. VIP tissue levels were determined in the left ventricle, mesenteric and coronary arteries. Sepsis induced significant increases in VIP concentrations in the plasma and mesenteric artery, but it decreased peptide levels in the coronary artery. Hemofiltration in both settings reduced concentrations of VIP in the mesenteric artery. In severe sepsis, VIP seems to be rapidly depleted from the coronary artery and, on the other hand, upregulated in the mesenteric artery. Hemofiltration in both settings has a tendency to drain away these upregulated tissue stores which could result in the limited secretory capacity of the peptide., J. Kuncová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
a1_The tissue factor plays a crucial role in initiating blood coagulation after plaque rupture in patients with acute coronary syndrome. It is abundant in atherosclerotic plaques. Moreover, P-selectin, some cytokines, endotoxin and immune complexes can stimulate monocytes and induce the tissue factor expression on their surface. The aim of the study was to compare plasma levels of the tissue factor, tissue factor pathway inhibitor, P-selectin, E-selectin and ICAM-1 in patients with acute myocardial infarction, unstable angina pectoris, stable coronary artery disease and normal control subjects. In addition, plasma levels of the tissue factor, tissue factor pathway inhibitor, P-selectin, E-selectin and ICAM-1 were measured in the blood withdrawn from the coronary sinus in a subgroup of patients with unstable angina pectoris and stable coronary artery disease in which the difference between concentrations in the coronary sinus and systemic blood was calculated. A significant increase in tissue factor pathway inhibitor plasma levels was detected in patients with acute myocardial infarction (373.3±135.1 ng/ml, p<0.01) and unstable angina pectoris (119.6±86.9 ng/ml, p<0.05) in contrast to the patients with stable coronary artery disease (46.3±37.5 ng/ml) and normal subjects (45.1±14.3 ng/ml). The plasma levels of tissue factor pathway inhibitor were significantly increased both in the coronary sinus and systemic blood in the patients with unstable angina pectoris. There was only a non-significant trend to higher plasma levels of the tissue factor in patients with acute myocardial infarction and unstable angina pectoris as compared to the patients with stable coronary artery disease and normal subjects, the values being 129.1±30.2 pg/ml, 130.5±57.8 pg/ml, 120.2±45.1 pg/ml and 124.9±31.8 pg/ml, respectively., a2_Plasma levels of soluble P-selectin was only slightly, but non-significantly higher in patients with unstable angina pectoris and stable coronary artery disease (184.2±85.4 ng/ml and 201.6±67.9 ng/ml, respectively) than in patients with the acute myocardial infarction (157.4±88.4 ng/ml) or normal subjects (151.4±47.1 ng/ml). The difference in plasma levels of soluble ICAM-1 between the blood withdrawn from the coronary sinus and systemic circulation correlated significantly with the corresponding difference in plasma levels of soluble P-selectin and E-selectin. In conclusion, the tissue factor and the tissue factor pathway inhibitor play a crucial role in the initiation of arterial thrombosis. The tissue factor pathway inhibitor levels are increased both in the systemic blood and in the coronary sinus of patients with the acute coronary syndrome., M. Malý, J. Vojáček, V. Hraboš, M. Semrád, M. Mates, J. Kvasnička, P. Salaj, V. Durdil., and Obsahuje bibliografii