COVID-19 (Coronavirus Disease) is an infectious disease caused by the coronavirus SARS-CoV-2 (Severe acute respiratory syndrome Coronavirus 2), which belongs to the genus Betacoronavirus. It was first identified in patients with severe respiratory disease in December 2019 in Wuhan, China. It mainly affects the respiratory system, and in severe cases causes serious lung infection or pneumonia, which can lead to the death of the patient. Clinical studies show that SARS-CoV-2 infection in critical cases causes acute tissue damage due to a pathological immune response. The immune response to a new coronavirus is complex and involves many processes of specific and non-specific immunity. Analysis of available studies has shown various changes, especially in the area of specific cellular immunity, including lymphopenia, decreased T cells (CD3+, CD4+ and CD8+), changes in the T cell compartment associated with symptom progression, deterioration of the condition and development of lung damage. We provide a detailed review of the analyses of immune checkpoint molecules PD-1, TIM-3, LAG-3 CTLA-4, TIGIT, BTLA, CD223, IDO-1 and VISTA on exhausted T cells in patients with asymptomatic to symptomatic stages of COVID-19 infection. Furthermore, this review may help to better understand the pathological T cell immune response and improve the design of therapeutic strategies for patients with SARS-CoV-2 infection.
In December of 2019, several cases of unknown atypical respiratory diseases emerged in Wuhan, Hubei Province in China. After preliminary research, it was stated that the disease is transmittable between humans and was named COVID-19. Over the course of next months, it spread all over the world by air and sea transport and caused a global pandemic which affects life of everyone now-a-days. A large number of countries, have since been forced to take precautions such as curfews, lockdowns, wearing facemasks etc. Even with vaccines being produced in mass numbers, lack of targeted therapy continues to be a major problem. According to studies so far it seems that elderly people are more vulnerable to severe symptoms while children tend to by asymptomatic or have milder form the disease. In our review, we focused on gathering data about the virus itself, its characteristics, paths of transmission, and its effect on hormone production and secretion. In such, there is insufficient information in the literature worldwide, especially the ones that focus on the effect of COVID-19 on individual organs systems within the human body. Hence, the present evidence-based study focused on the possible effects of COVID-19 on adrenal gland and gonads i.e. on the process of steroidogenesis and fertility.
In the era of COVID-19 pandemic, organ transplantation programs were facing serious challenges. The lung transplantation donor pool was extremely limited and SARS-CoV-2 viral load assessment has become a crucial part of selecting an optimal organ donor. Since COVID-19 is a respiratory disease, the viral load is thought to be more important in lung transplantations as compared to other solid organ transplantations. We present two challenging cases of potential lung donors with a questionable COVID-19 status. Based on these cases, we suggest that the cycle threshold (Ct) value should always be requested from the laboratory and the decision whether to proceed with transplantation should be made upon complex evaluation of diverse criteria, including the nasopharyngeal swab and bronchoalveolar lavage PCR results, the Ct value, imaging findings and the medical history. However, as the presence of viral RNA does not ensure infectivity, it is still to be clarified which Ct values are associated with the viral viability. Anti-SARS-CoV-2 IgA antibodies may support the diagnosis and moreover, novel methods, such as quantifying SARS-CoV-2 nucleocapsid antigen in serum may provide important answers in organ transplantations and donor selections.
Prior to the onset of the pandemic, evidence on the conversion of regular rental housing into permanent holiday homes has fuelled concerns that Airbnb and other short-term rentals contribute to the shortage of affordable homes and to the displacement of regular residents in cities with high housing demand. When the pandemic set in, the media was quick to speculate that holiday homes would be returned to the regular rental market. This paper provides some theoretical reflections on the factors that are driving and impeding such a development and presents preliminary results from an ongoing research project that empirically tracesthe impacts of COVID-19 on the rental housing market based on an analysis of real estate listings in four large Austrian cities. We argue that a current shift to the regular rental market is likely, but that the medium- and long-term development is uncertain. Empirically, we demonstrate that such a shift has occurred in all four cities considered. We do not find evidence, however, that the increased rental housing supply has dampened rent levels.
High incidence of thrombosis and venous thromboembolism was reported in patients with COVID-19. In this study, we focused on analysis of thrombophilic mutations performed without a standard DNA extraction step. In one hundred of COVID-19 positive outpatients, real-time PCR for Leiden mutation in the FV gene and G20210A mutation in the FII gene was carried out from DNA extracts and modified whole blood samples, and their cycle threshold (Ct) values were evaluated. In the extracts, healthy homozygotes (wt/wt), heterozygotes (M/wt), and homozygous carriers of Leiden mutation (M/M) provided median Ct values of 18.5, 19.4/22.0, and 20.9. In the whole blood, Ct values were 25.3 (wt/wt), 24.8/27.2 (M/wt), and 26.9 (M/M). Median Ct values for G20210A in the extracts were 19.6 for homozygotes (wt/wt), and 19.7/20.4 for heterozygous carriers. The whole blood samples provided Ct values of 23.9 in healthy homozygotes and 26.3/27.2 in heterozygotes for G20210A mutation. No homozygous subjects for G20210A and no double heterozygotes (for Leiden and G20210A mutations) were found. Despite significant differences in the Ct values, genotyping showed complete result concordance of the DNA extracts and the whole blood samples. The integrity and amplificability of DNA molecules in the whole blood samples during 28 days of deep freezing, interrupted by four cycles of thawing, did not significantly change. In conclusion, we demonstrated a new protocol for the detection of the thrombophilic mutations via real-time PCR on the modified whole blood of COVID-19 positive patients. The blood modification was reliable, easy, cheap, and saving costs and turnaround time of the whole laboratory process.
In this paper we present the first insight about the impact of the COVID epidemic on the pri-mary housing market in Poland, with a focus on Warsaw which is the largest market. We ex-plain the structural features that allowed the market to return to pre-shock levels after the pandemic shock. Contrary, after the 2007-2008 global financial crisis the negative consequences lasted for several years. This time a sharp monetary policy and fiscal intervention was carried out. Moreover, the developer sector is much more mature, has expanded its production capaci-ties. We show empirically that the monopolistic competition of developers allowed them to restrict excessive demand that was observed before the COVID broke out. In this way they were able to increase prices despite the economic problems. Another important structural change was the increased housing demand, mainly for investment housing, which was fi-nanced predominantly with cash and contributed to the development of the rental market. We approximate the investment demand, which was generated by private households that pur-chased flats for rental, with the help of a simple demand and supply model.