Singulární optika představuje poměrně mladou, rychle se rozvíjející oblast moderní optiky a fotoniky. Zabývá se studiem fázových singularit vlnové funkce popisující optické záření. Hlavní pozornost je soustředěna na spirální singularity nazývané optické víry. Vírová struktura optického záření má přímou souvislost s orbitálním momentem hybnosti, který se významně projevuje při interakci s mikročásticemi a atomy. Kromě fundamentálních poznatků, které přinášejí nové informace o podstatě a vlastnostech elektromagnetického záření, nabízí singulární optika i perspektivní aplikace v oblasti atomové optiky, mikromechaniky, biologie, zpracování informace a optických počítačů., Zdeněk Bouchal., and Obsahuje bibliografii
Světelné víry se objevují v jevech, které jsou v optice známy od počátku 19. století. Je proto překvapivé, že první ucelená práce byla v této tematice publikována až v roce 1974 a výzkum se plně rozvinul v posledních 20 letech. V příspěvku jsou prezentovány jednoduché geometrické představy o světelných vírech a jejich fyzikálních vlastnostech a naznačena podstata základních experimentů a aplikací., Light vortices appear in phenomena that have been known in optics from the early 19th century. It is therefore surprising that any comprehensive work on this topic did not appear until 1974 and that the research has only fully developed during the last 20 years. In this paper, simple geometric ideas about light vortices and their physical properties are presented and the basic of experiments and applications are outlined., Zdeněk Bouchal, Petr Bouchal., and Obsahuje seznam literatury
In this paper, we consider the solution of optimal control problem for hyperdiffusion equation involving boundary function of continuous time variable in its cost function. A specific direct approach based on infinite series of Fourier expansion in space and temporal integration by parts for analytical solution is proposed to solve optimal boundary control for hyperdiffusion equation. The time domain is divided into number of finite subdomains and optimal function is estimated at each subdomain to obtain desired state with minimum energy. Proposed method has high flexibility so that decision makers are able to trace optimal control in a prescribed subinterval. The implementation of the theory is presented and the effectiveness of the boundary control is investigated by some numerical examples.
Key management system maintains the confident of secret information from unauthorized users and verifying the integrity of exchanged messages and authenticity. But recent advances in electronics and computer technologies create the complexity of key management in wireless sensor networks (WSN). Additionally, the traditional key management systems are not up to the mark due to limited resources like memory, and energy constraints.In this paper, we propose an optimal cluster based key management system (OC-KMS) for WSNs. The proposed system consist of two contributions, in first, we perform the energy efficient clustering using modified animal Diaspora (MAD)optimization algorithm and cluster head (CH) selection using JAYA trust model. In second contribution, we propose the certificate less signcryption algorithm, which generates and distributes the public and private keys for each node in sensor networks. The proposed system resists various network layer attacks without affecting the network performance. The simulation resultdescribes that the proposed system perform very efficient than existing in terms of both performance and security wise.
A component selection is a crucial problem in Component-Based Software Engineering (CBSE), which is concerned with the assembly of pre-existing software components.
We are approaching the component selection involving dependencies between components. We formulate the problem as multiobjective, involving two objectives and one constraint. The approach used is an evolutionary computation technique. The experiments and comparisons with the greedy approach show the effectiveness of the proposed approach.
The determination of cytochrome c oxidase (COX) activity represents an important indicator for the evaluation of cell oxidative capacity. However, it has been shown repeatedly that different factors modify the rate of COX activity under various experimental conditions. The most important concern the ionic concentrations of the medium and the application of various detergents for the solubilization of mitochondrial membranes. We found the highest activity of COX in rat heart homogenates and mitochondria at 40-60 mM potassium phosphate. The rate of COX activity is dependent on the detergent/protein (P) ratio. Using n-dodecyl-b-D-maltoside (lauryl maltoside, LM) as the detergent, we obtained the highest activity at LM/P ratios of (50:100):1. By kinetic measurements of low-affinity binding sites in heart mitochondria, we found Vlim values of 4.3 and 22.2 mmol cytochrome c per min per mg P in the presence or absence of lauryl maltoside, respectively. The Km values were 16.7 mmol in the presence or absence of lauryl maltoside. Our results thus indicate that 1) the exact assessment of COX activity in heart homogenates and mitochondria requires the determination of optimum phosphate concentrations in the medium used, and 2) even small modifications of the experimental procedure may induce significant differences in the maximum values of COX activity., A. Stieglerová, Z. Drahota, B. Ošťádal, J. Houštěk., and Obsahuje bibliografii
Nonimprovable, in a sense sufficient conditions guaranteeing the unique solvability of the problem \[ u^{\prime }(t)=\ell (u)(t)+q(t), \qquad u(a)=c, \] where $\ell \:C(I,\mathbb R)\rightarrow L(I,\mathbb R)$ is a linear bounded operator, $q\in L(I,\mathbb R)$, and $c\in \mathbb R$, are established.
In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see \cite {chen}, for finite dimensional stochastic equations or \cite {UC}, for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see \cite {1990}, \cite {ukl}). Under stabilizability and uniform observability conditions and assuming that the control weight-costs are uniformly positive, we establish that BDRE has a unique, uniformly positive, bounded on ${\mathbf R}_{+}$ and stabilizing solution. Using this result we find the optimal control and the optimal cost. It is known \cite {ukl} that uniform observability does not imply detectability and consequently our results are different from those obtained under detectability conditions (see \cite {1990}).