We investigate the control of dynamical networks for the case of nodes, that although different, can be make passive by feedback. The so-called V-stability characterization allows for a simple set of stabilization conditions even in the case of nonidentical nodes. This is due to the fact that under V-stability characterization the dynamical difference between node of a network reduces to their different passivity degrees, that is, a measure of the required feedback gain necessary to make the node stable at a desired solution. We propose a pinning control strategy that extends this approach to solve the tracking problem, furthermore using an adaptive controller approach we provide a methodology to impose a common reference trajectory to a network of different nodes by pinning only a few of them to the desired solution. We illustrate our results with numerical simulation of well-known benchmark systems.
In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see \cite {chen}, for finite dimensional stochastic equations or \cite {UC}, for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see \cite {1990}, \cite {ukl}). Under stabilizability and uniform observability conditions and assuming that the control weight-costs are uniformly positive, we establish that BDRE has a unique, uniformly positive, bounded on ${\mathbf R}_{+}$ and stabilizing solution. Using this result we find the optimal control and the optimal cost. It is known \cite {ukl} that uniform observability does not imply detectability and consequently our results are different from those obtained under detectability conditions (see \cite {1990}).