Chlorophyll (Chl) content, photochemical activity of chloroplasts as well as photosynthetic and crop productivity were studied in different winter hexaploid Triticale (xTriticosecale Witt.) lines and their F1 hybrids. Heterosis enhanced Chl content, photosynthetic potential, photosynthetic productivity, and grain yield only in several F1 hybrids of Triticale. Indication in some genotypes of close correlations among morphological structure, Chl content, photochemical activity of chloroplasts, photosynthetic potential, and plant productivity may be used in breeding practice of Triticale. and S. N. Kabanova ... [et al.].
CO2 and O2 exchange rates, chlorophyll fluorescence and P700 oxidation (absorption at 830 nm) were recorded in Helianthus amuus L. leaves grown in soil in a growth cabinet. Phase-portraits of CO2 exchange rate plotted against three other parameters were ušed to interpret control of electron transport during photosynthesis oscillations, initiated by transfer from air to the saturating CO2. Plots of the CO2 exchange rate vs. P700 revealed that the P700 part which remained oxidized was almost proportional to CO2 exchange rate during both the ascending and descending phase of oscillations.
Inactivation of photosynthesis during atmospheric and osmotic (highly concentrated NaCl or sucrose solutions) dehydration was monitored by measurement of chlorophyll fluorescence induction (OIP-phase, Kautsky-curves) in three lichen species. The induction curves were changed in a very similar way by all three treatments. All dehydration effects were rapidly reversible after rehydration. At relatively mild water stress, the rise time to the transient peak Fp was prolonged, and the variable part of fluorescence was diminished. In addition, at severe water stress, a considerable decline of the F0 value was observed. For NaCl treatment this effect started at water potentials <-8.5 MPa in P. aphthosa, <-12 MPa in H. physodes, and <-21 MPa in L. pulmonaria. Above these water potentials, our observations are in agreement with values from desiccation-tolerant algae, higher plants, and lichens, where an inactivation on the photosystem 2 (PS2) donor side has been postulated. At very low water potentials, the decrease in F0 probably monitors changes in the organization of the antenna apparatus of PS2. and M. Jensen, Samira Chakir, G. B. Feige.
We investigated the effect of large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activase (RuBPCO-A) on photosynthesis and constructed two plant expression vectors and introduced them into rice cultivars (Oryza sativa f. japonica cv. Nipponbare) through Agrobacterium tumefaciens-mediated transformation. Plasmid pCBrbcSRca contained the cDNA of RuBPCO-A large isoform (rca) controlled by RuBPCO small subunit gene promoter (rbcS), and plasmid pCBUbi-antirca contained a reversed rca sequence driven by maize ubiquitin promoter. Transformants were screened by polymerase chain reaction (PCR), Southern and Western blot analysis. Compared to the control rice plants, RuBPCO activity was improved in the pCBrbcSRca rice plants, which is opposite to RuBPCO activity in the pCBUbi-antirca rice plants. Net photosynthetic rate, quantum yield of electron transport in photosystem 2, and steady state photochemical fluorescence quenching increased in the pCBrbcSRca plants, but decreased in the pCBUbi-antirca plants as compared to the controls. The pCBrbcSRca plants had heavier grains and accelerated development, while the pCBUbi-antirca plants showed reverse changes. Thus RuBPCO-A large isoform exerts considerable effect on photosynthesis and is a promising target for plant breeding to improve rice crop yield. and H. R. Wu ... [et al.].
To investigate the role of glycine betaine in photosynthesis under stress, a transgenic wheat (Triticum aestivum L.) line T6 overaccumulating glycine betaine and its wild type Shi4185 were used. Seedlings were exposed to conditions of drought (30%, PEG-6000), heat (40°C) and their combination. The results revealed ultrastructural damage to the chloroplast and thylakoid lamellae with the withered phenotype by both drought and heat stress, and the damage was exacerbated by the combination of drought and heat. The appearance of a K step in the typical O-J-I-P curve and the decrease of Hill activity indicated a reduction of oxygen evolving complex function caused by stress. The greater damage was found in wild type than T6. Overaccumulation of glycine betaine in T6 could protect lipids in the thylakoid membrane from damage and stabilize the index of unsaturated fatty acids under stress. A lower ratio of monogalactosyl diacylglycerol/digalactosyl diacylglycerol and higher phosphatidylglycerol content in the thylakoid membrane of T6 were also observed under stress. These effects can promote stability of the thylakoid membrane. Otherwise, glycine betaine overaccumulation decreased photoinhibition of PSII under stress. The results also suggest that xanthophyll cycle-dependent non-radiative energy dissipation may be involved in the GB-mediated effects on PSII function under stress conditions. and G. P. Wang ... [et al.].
We investigated the different responses of wheat (Triticum aestivum L.) plants to drought- (DS) and heat stress (HS), and analyzed the physiological mechanisms of glycine betaine (GB) involved in the improvement of wheat tolerance to the combination of these stresses. The transgenic wheat T6 line was generated by introducing a gene encoding betaine aldehyde dehydrogenase (BADH) into the wild-type (WT) Shi4185 line. The gene was cloned from the Garden Orache plant (Atriplex hortensis L.). Wheat seedlings were subjected to drought stress (30%, PEG-6000), heat stress (40°C), and their combination. Photosynthetic gas exchange, water status and lipid peroxidation of wheat leaves were examined under different stresses. When subjected to a combination of drought and heat, the inhibition of photosynthesis was significantly increased compared to that under DS or HS alone. The increased inhibition of photosynthesis by the combined stresses was not simply the additive stress effect of separate heat- and drought treatments; different responses in plant physiology to DS and HS were also found. HS decreased the chlorophyll (Chl) content, net photosynthetic rate (PN), carboxylation efficiency (CE) and apparent quantum yield (AQY) more than DS but DS decreased the transpiration rate (E), stomata conductance (gs) and intercellular CO2 concentration (Ci) more than HS. GB over-accumulation led to increased photosynthesis not only under individual DS or HS but also under their combination. The enhancement of antioxidant activity and the improvement of water status may be the mechanisms underlying the improvement of photosynthesis by GB in wheat plants. and G. P. Wang ... [et al.].
Calmodulin (CaM) is a highly conserved calcium sensor protein associated with chilling tolerance in living organisms. It has four EF-hand domains for binding of four Ca2+, two of them located in the N-terminus, and the other two in the C-terminus. A notothenioid CaM gene fragment (CaMm), which only codes for N-terminus of CaM (with two EF-hand domains), was introduced into Nicotiana benthamiana. Effects of its overexpression on chilling tolerance in plants were explored. During 4◦C or 0◦C chilling treatment, both CaMm and CaM transgenic plants showed higher PSII maximum quantum yield, actual quantum yield, and soluble protein content, lower electrolyte leakage and malondialdehyde content than that of the control. The changes in these physiological indices were comparable between the CaMm and CaM transgenic plants during the treatments. These results indicate that the N-terminus of calmodulin is likely the key functional domain involved in the adaptive response to cold stress., T. J. Zhang, L. J. Pan, Q. Huang, L. H. Zhu, N. Yang, C. L. Peng, L. B. Chen., and Obsahuje seznam literatury
Drought impacts severely crop photosynthesis and productivity. Development of transgenic rice overexpressing maize phosphoenolpyruvate carboxylase (PEPC) is a promising strategy for improving crop production under drought stress. However, the molecular mechanisms of protection from PEPC are not yet clear. The objective of this study was: first, to characterize the response of individual photosynthetic components to drought stress; second, to study the physiological and molecular mechanisms underlying the drought tolerance of transgenic rice (cv. Kitaake) over-expressing maize PEPC. Our results showed that PEPC overexpressing improved the ability of transgenic rice to conserve water and pigments during drying as compared to wild type. Despite the fact that drought induced reactive oxygen species and damaged photosystems (especially, PSI) in both lines, higher intercellular CO2 concentration protected the photosynthetic complexes, peptides, and also ultrastructure of thylakoid membranes against the oxidative damage in transgenic rice. In conclusion, although photosynthetic apparatus suffered an inevitable and asymmetric impairment during drought conditions, PEPC effectively alleviated the oxidative damage on photosystems and enhanced the drought tolerance by increasing intercellular CO2 concentration. Our investigation provided critical clues for exploring the feasibility of using C4 photosynthesis to increase the yield of rice under the aggravated global warming., W. J. Shen, G. X. Chen, J. G. Xu, Y. Jiang, L. Liu, Z. P. Gao, J. Ma, X. Chen, T. H. Chen, and C. F. Lv., and Obsahuje seznam literatury
In transgenic (TG) tomato (Lycopersicon esculentum Mill.) overexpressed ω-3 fatty acid desaturase gene (LeFAD7) was identified, which was controlled by the cauliflower mosaic virus 35S promoter and induced increased contents of unsaturated fatty acids in thylakoid membrane. Under chilling stress at low irradiance (4 °C, 100 µmol m-2 s-1) TG plants with higher linolenic acids (18: 3) content maintained a higher O2 evolution rate, oxidizable P700 content, and maximal photochemical efficiency (Fv/Fm) than wild type (WT) plants. Low temperature treatment for 6 h resulted in extensive changes of chloroplast ultrastructure: in WT plants most chloroplasts became circular, the number of amyloids increased, appressed granum stacks were dissolved, grana disappeared, and the number of grana decreased, while only a few grana were found in leaves of TG plants. Hence the overexpression of LeFAD7 could increase the content of
18 : 3 in thylakoid membrane, and this increase alleviated the photoinhibition of photosystem (PS) 1 and PS2 under chilling at low irradiance. and X.-Y. Liu ... [et al.].