Seedlings of baldcypress (Taxodium distichum L.) grown in sealed containers containing nutrient solution were subjected to root-zone oxygen deficiency, physical restriction, and the combined stresses in a greenhouse. After six weeks of treatments (Phase I), half of the plants were harvested. The remaining half were allowed to continue (Phase II) under various treatments except plants that had restricted roots were freed thus allowing free expansion of roots into the nutrient solution. Oxygen deficiency and root physical restriction inhibited plant gas exchange parameters. Net photosynthetic rate (PN) was significantly higher in aerated unrestricted root (AUR) plants than in aerated root restricted (AR) plants and in anaerobic root unrestricted (FUR) plants than in anaerobic root restricted (FR) plants. After Phase I, FUR plants' shoot and root biomasses were 57.0 and 30.6 % lower than those of AUR plants, and AUR plants showed 3.3 and 3.8 times greater shoot and root biomasses than the AR plants, respectively. During Phase II, PN recovered rapidly in plants under aerated conditions, but not in plants under anaerobic conditions. The removal of physical root restriction under both aerated and anaerobic conditions resulted in rapid shoot and root growth in seedlings. Hence, root restriction or root-zone anaerobiosis, reductions in plant gas exchange, and biomass production in baldcypress were closely interrelated. In addition, root release from restriction was related to the regain of photosynthetic activity and biomass growth. The results support the previously proposed source-sink feed-back inhibition of photosynthesis in plants subjected to root-zone oxygen deficiency or physical restriction. and S. R. Pezeshki, M. I. Santos.
Carbon isotope discrimination (Δ) has been proposed as an indirect estimation criterion for water use efficiency in C3 plants. Because of the higher cost for Δ analysis, ash content or K concentration has been proposed as an alternative criterion for Δ in many species. In five typical habitats of the extreme arid Ejina desert oasis in northwest of China, the seasonal variations of foliar δ, ash content, and potassium (K) concentration were researched in two constructive desert riparian plants (Populus euphratica Olivier, Tamarix ramosissima Ledeb). The correlations of foliar Δ with ash content and K concentration in both species were also examined to evaluate the feasibility of the foliar ash content and K concentration as surrogates of Δ in P. euphratica and T. ramosissima. Results showed that there were significant effects of plant species, habitats and growth season on foliar Δ, ash content, and K concentration. Foliar Δ and K concentration in P. euphratica were significantly higher than those in T. ramosissima, whereas, the ash content was reverse. Among habitats, the trends of δ signatures in both P. euphratica and T. ramosissima were similar, δ values and ash content in both species were the lowest in the dune. Both in the Gobi and dune sites, K concentration in P. euphratica and T. ramosissima was different. In the whole growth period, foliar Δ values and ash content in both species were gradually increased, but K concentration was decreased. Ash content was significantly and positively related to δ in both P. euphratica and T. ramosissima. However, significantly negative correlations between foliar δ and K concentration as well as between ash content and K in P. euphratica were found. In T. ramosissima, the relationship was positive but very weak. and S. K. Cao ... [et al.].
Two populations, one from lesser saline Derawar Fort (DF) and the other from highly saline Ladam Sir (LS) in the Cholistan desert, for each of the five grass species, Aeluropus lagopoides, Cymbopogon jwarancusa, Lasiurus scindicus, Ochthochloa compressa, and Sporobolus ioclados were examined to investigate the influence of salinity on structural and functional characteristics of stomata. Salinity tolerance in A. lagopoides mainly depended on controlled transpiration rate (E) and high water-use efficiency (WUE), which was found to be regulated by fewer and smaller stomata on both leaf surfaces as well as stomatal encryption by epidermal invaginations. C. jwarancusa had sunken stomata on the abaxial surface only, which largely reflected a reduced E, but less affected stomatal conductance (gs) or WUE. L. scindicus had fewer but larger stomata along with hairs/trichomes which may function to avoid water loss through transpiration, and hence, to attain a high WUE. In O. compressa stomata were found only on the abaxial surface and these were completely encrypted by epidermal invaginations as well as a dense covering of microhairs, which was associated with a low E and high WUE under salinity stress. In S. ioclados, the traits of increased stomatal density and decreased stomatal area may be critical for stomatal regulation under salt-prone environments. High stomatal regulation depended largely on stomatal density, area, and degree of encryption under salinity, which is of great ecophysiological significance for plants growing under osmotic stresses. and N. Naz ... [et al.].
Relationships between leaf nitrogen (N) content and leaf gas exchange components of a single cotton (Gossypium hirsutum L.) leaf subtending the fruit during ontogeny were investigated under field conditions. A 20-d old leaf exhibited the highest physiological activity characterized by net photosynthetic (PN) and transpiration (E) rates, stomatal conductances to CO2 exchange (gsCO2) and water vapor transfer (gsH2O), and nitrogen (N) content. With the advent of leaf senescence, the gas exchange rates declined as exhibited by the 30-, 40-, and 60-d old leaves. Regression analysis indicated close relationships between gsCO2 and PN, and gsH2O and E as the leaves advanced towards senescence. Both PN and gsCO2 were related to N as they declined with leaf age. Thus, the declines in PN were associated with stomatal closure and removal of N during leaf ontogeny. and B. R. Bondada, D. M. Oosterhuis.
Two methods have been developed concurrently for hyperspectral measurements of plant canopy reflectance in two narrow wavelength bands centred around 531 and 570 nm. A laboratory-built two-channel radiometer provided an easy and quick estimation of the Photochemical Reflectance Index PRI = (R531 - R570)/(R570 + R531) of a plot of alfalfa. A CCD digital camera provided multispectral imaging and the analysis of this index on the same target. The two devices are complementary. The results of measurements are complementary with those of chlorophyll fluorescence induction. and M. Méthy, R. Joffre, S. Rambal.
Leaf level net photosynthetic rates (PN) of laurel oak (Quercus hemispherica) juveniles grown under contrasting nutrient and CO2 regimes were negatively correlated with red to far-red ratios, R/FR (690/760 nm), steady-state, solar-excited fluorescence ratios (r2 = 0.66, n = 12) measured across 12 plant canopies. Laurel oak juveniles that had been subjected to nitrogen stress over a period of a year demonstrated higher R/FR than their counterparts that had been provided with sufficient nitrogen. Plants that had been grown at elevated CO2 concentrations, EC [700 μmol (CO2) mol-1] also exhibited significantly higher R/FR when subjected to normal ambient carbon dioxide concentrations than their counterparts grown under ambient concentrations, AC [380 μmol (CO2) mol-1]. All fluorescence measurements were obtained by observing a multi-plant canopy using a unique solar-blind passive sensor. This sensor, which utilizes Fraunhofer-line discrimination techniques, detects radiation at the cores of the lines comprising the atmospheric oxygen A- and B-bands, centered at 762 and 688 nm, respectively. These results support the use of solar-excited steady-state plant fluorescence as a potential tool for remote measurement of canopy radiation use efficiency. and A. Freedman ... [et al.].
The relationship between the activity of xanthophyll cycle and chlorophyll (Chl) metabolism was investigated using two cultivars, Helan No. 3 (seawater-tolerant cultivar) and Yuanye (seawater-sensitive cultivar), of spinach (Spinacia oleracea L.) plants cultured in Hoagland's nutrient solution, with or without seawater (40%). The results showed that, in plants of two cultivars with seawater, the xanthophyll cycle seems to show a principal protection mechanism against photoinhibition under seawater stress. Furthermore, accumulation of reactive oxygen species (ROS) in chloroplasts of two cultivars was enhanced by seawater to lower the activity of porphobilinogen deaminase. Namely, the conversion of porphobilinogen into uroporphyrinogen III involved in Chl biosynthetic processes was inhibited by seawater. In Helan No. 3 spinach plants with seawater, higher activity of xanthophyll cycle in the leaves dissipated more excess light energy, which appeared to lower the levels of ROS in chloroplasts. As a consequence, the Chl biosynthesis in Helan No. 3 leaves with seawater showed only a weak inhibition and the activity of chlorophyllase (Chlase) was not affected by seawater stress. In contrast, a more pronounced accumulation of ROS in chloroplasts of Yuanye leaves, which possess lower xanthophyll cycle activity, severely inhibited Chl biosynthesis and remarkably enhanced the activity of Chlase, which aggravates the decomposition of Chl. These results suggest that higher activity of xanthophyll cycle in seawater-tolerant spinach plays a role in maintaining Chl metabolic processes, probably by decreasing the levels of ROS, when the plants are cultured in the nutrient solution with seawater (40%). and J. Sun ... [et al.].
Net photosynthetic rate growth and flower and firoit settíng pattems were studied in two cultivars of bell-pepper (Ccpsicum annuum L. cv. Arka Mohini, a detenninate type and Arka Basant, an indetenninate type) grown at two different night temperatures. and growdi were higher at high night temperature (27/22 <*C, day/night) dian at low night temperature (27/17 °C) in bodl cultivars. The flower and fitiit numbers were higher in die plants grown at 27/17 °C than at 27/22 oC.
The effect of defolíation on net photosynthetic rate (Pn), dry matter production and fruit growth was studied in bell-pepper (Capsicum annuum L. cv. Arka Gaurav). Considerable differences in were observed between defoliated and non-defoliated plants. Defolíation influenced the total dry matter production, leaf area and the relative growth rate of the plants. The bell-pepper has the capacity to compensate photosynthetically for a certain degree of defolíation without reducing the biological yield. No significant differences in the dry matter of fruits per plant were foímd between defoliated and non-defoliated plants.