We conducted a hydroponic experiment in order to study effects of the ammonium/nitrate ratio (0:15, 5:10, 7.5:7.5, and 10:5) on photosynthetic characteristics and biomass accumulation in Brassica chinensis under low light intensity and water stress. Results showed that net photosynthetic rate, transpiration rate, intrinsic water-use efficiency, stomatal conductance, intercellular CO2 concentration, effective quantum yield of PSII photochemistry, electron transport rate, and nonphotochemical quenching were lower in the treatment (low light intensity and water deficit) than those in the control, whereas stomatal limitation increased. Minimum fluorescence, maximal quantum yield of PSII photochemistry, and photochemical quenching were largely unchanged. Pigment contents first increased and then decreased as the ammonium/nitrate ratios were altered, with significant differences between treatment and control observed at all ratios except for 10:5. Biomass first increased slightly and then decreased both in treated and control plants. Results suggest that economic losses caused by extreme conditions can be minimized by a proper adjustment of the ammonium/nitrate ratio., H. Q. Shang, G. M. Shen., and Obsahuje bibliografii
Excessive levels of bicarbonate adversely affect the growth and metabolism of plants. Broussonetia papyrifera (L.) Vent. and Morus alba L., belonging to family Moraceae, possess the favorable characteristics of rapid growth and adaptability to adverse environments. We examined the response of these two plant species to bicarbonate stress in terms of photosynthetic assimilation of inorganic carbon. They were exposed to 10 mM sodium bicarbonate in the culture solution for 20 days. The photosynthetic response was determined by measuring the net photosynthetic rate of the leaf, water-use efficiency, and chlorophyll fluorescence on days 10 and 20. The bicarbonate-use capacity of the plants was studied by measuring the carbonic anhydrase activity and the compositions of the stable carbon and hydrogen isotopes. The photosynthetic response to high concentration of bicarbonate varied with plant species and treatment durations. High concentrations of bicarbonate decreased the photosynthetic assimilation of inorganic carbon in the two plant species to half that in the control plants on day 10. Bicarbonate treatment did not cause any damage to the reaction centers of photosystem II in Morus alba; it, however, caused a decline in the quantum efficiency of photosystem II in B. papyrifera on day 20. Moreover, B. papyrifera had a greater bicarbonate-use capacity than M. alba because carbonic anhydrase converted bicarbonate to CO2 and H2O to a greater extent in B. papyrifera. This study showed that the effect of bicarbonate on photosynthetic carbon metabolism in plants was dual. Therefore, the concentration of bicarbonate in the soil should first be considered during afforestation and ecological restoration in karst areas., Y. Y. Wu, D. K. Xing., and Obsahuje bibliografii
The aim of the study was to the assess the influence of Ca/Mg ions ratio on the photosynthetic activity of Salix viminalis L. ‘Cannabina’ plants cultivated in medium enriched with Cu(NO3)2. The experiment was conducted in controlled conditions in a phytotron for 21 days; hence the early plant response was tested. Plants were cultivated with different Ca/Mg ions ratios, i.e. (4:1)l, (4:1)h, and 1:10. Plants were additionally treated with Cu(NO3)2 at 1, 2, and 3 mM concentration in cultivation medium. Net photosynthetic rate, stomatal conductance and transpiration were measured after the first, second and third week of cultivation. Additionally, chlorophyll content, leaf morphology, root biomass and copper accumulation in leaves and roots were investigated. The investigations revealed differences in plant response to particular treatments - differences in Cu accumulation for particular Ca/Mg ions ratios were detected. It seems that plants are adapted to high Cu2+ concentrations, when 1:10 Ca/Mg ions ratio is applied. The highest Cu accumulation in roots was noted for plants fertilized with 1:10 Ca/Mg ions ratio, together with high Cu translocation to above-ground plant organs, which suggests its higher potential in phytoremediation., K. Borowiak ... [et al.]., and Obsahuje bibliografii
Chromate-resistant Chlorella spp. isolated from effluents of electroplating industry could grow in the presence of 30 μM K2Cr2O7. Since photosynthesis is sensitive to oxidative stress, chromate toxicity to photosynthesis was examined in this algal isolate. Chromate [Cr(VI)] up to 100 μM was found to stimulate photosynthesis, while 90% inhibition was found, when the cells were incubated with 1 mM Cr(VI) for 4 h. Photosystem (PS) II was inhibited by 80% and PSI by 40% after such Cr(VI) treatment. Thermoluminescence studies on cells treated with 1 mM Cr(VI) for 4 h showed that S2QA - recombination peak (Q) was shifted to higher temperature, whereas S2/S3QB - recombination peak (B) was shifted to lower temperature. These shifts indicated alga stress response in order to overcome an excitation stress resulting from the inhibition of photosynthesis by Cr(VI). The nontreated Chlorella cells kept in the dark showed periodicity of four for the Q peak (4-8°C) and B peak (34-38°C) after exposure to series of single, turnover, saturating flashes. This periodicity was lost in Cr(VI)-treated cells. Higher concentrations of Cr(VI) inhibited mainly the electron flow in the electron transport chain, inactivated oxygen evolving complex, and affected also Calvin cycle enzymes in the Cr(VI)-resistant isolates of Chlorella. and S. N. Yewalkar, K. N. Dhumal, J. K. Sainis.
The physiological and biochemical behaviour of rice (Oryza sativa, var. Jyoti) treated with copper (II) oxide nanoparticles (CuO NPs) was studied. Germination rate, root and shoot length, and biomass decreased, while uptake of Cu in the roots and shoots increased at high concentrations of CuO NPs. The accumulation of CuO NPs was observed in the cells, especially, in the chloroplasts, and was accompanied by a lower number of thylakoids per granum. Photosynthetic rate, transpiration rate, stomatal conductance, maximal quantum yield of PSII photochemistry, and photosynthetic pigment contents declined, with a complete loss of PSII photochemical quenching at 1,000 mg(CuO NP) L-1. Oxidative and osmotic stress was evidenced by increased malondialdehyde and proline contents. Elevated expression of ascorbate peroxidase and superoxide dismutase were also observed. Our work clearly demonstrated the toxic effect of Cu accumulation in roots and shoots that resulted in loss of photosynthesis., M. V. J. Da Costa, P. K. Sharma., and Obsahuje seznam literatury
In order to investigate the effect of day/night temperature difference (DIF) on photosynthetic characteristics of tomato plants (Solanum lycopersicum, cv. Jinguan 5) at fruit stage, an experiment was carried out in climate chambers. Five day/night temperature regimes (16/34, 19/31, 25/25, 31/19, and 34/16°C) with respective DIFs of -18, -12, 0, +12, and +18 were used and measured at mean daily temperature of 25°C. The results showed that chlorophyll (Chl) a, Chl b, net photosynthetic rate (PN), stomatal conductance (gs), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII photochemistry (ϕPSII), and photochemical quenching (qp) significantly increased under positive DIF, while they decreased with negative DIF. In contrast, the Chl a/b ratio and nonphotochemical quenching (NPQ) decreased under positive DIF, while increased with negative DIF. Chl a, Chl b, PN, gs, Fv/Fm, ϕPSII, and qp were larger under +12 DIF than those at +18 DIF, while Chl a/b and NPQ showed an opposite trend., X. K. Yuan., and Seznam literatury
The rubber tree (Hevea brasiliensis) is an important tropical crop with a high economic value that has been successfully cultivated in Xishuangbanna, China. Xishuangbanna has a long dry season (November-February) with cold nights and frequent fog events. Thus, it is important to select chilling-tolerant cultivars in order to understand better the role of fog in protecting rubber tree from chilling-induced photodamage. In this study, we examined the photosynthetic responses of six rubber tree cultivars (Lan 873, Yunyan 77-2, Yunyan 77-4, GT1, Reken 523, and Reyan 733-97) to night-chilling stress (0, 5, and 10°C) and two different irradiances (100 and 50% of full sunlight). Our results showed that all six cultivars could withstand nights at 10°C for three days, while night chilling at 0 and 5°C impaired photosynthesis, which was indicated by photoinhibition, decrease of soluble protein content, and accumulation of malondialdehyde. Reken 523 and Reyan 733-97 were more sensitive to night chilling than other cultivars. Low irradiance (50% of full sunlight) after the chilling treatment apparently mitigated the effect of night-chilling stress. It indicates that frequent fog events after cold nights might greatly contribute to the success of rubber tree cultivation in Xishuangbanna., Y.-H. Tian, H.-F. Yuan, J. Xie, J.-W. Deng, X.-S. Dao, Y.-L. Zheng., and Seznam literatury
Water stress usually impairs photosynthesis and plant growth. Acacia tortilis subsp. raddiana is well adapted to dry environments. The aim of the present study was to determine the impact of a progressive decrease in soil water content on photosynthetic-related parameters at the young seedling stage. Drought-induced plant responses occurred according to two types of kinetics. Water potential, stomatal conductance, and transpiration rates were rapidly affected by a decrease in soil water content, while chlorophyll fluorescence-related parameters and chlorophyll concentrations decreased only when soil water content was lower than 40%. The maximal efficiency of PSII photochemistry in the dark-adapted state remained unaffected by the treatment, whatever the stress duration. A. raddiana accumulated high concentrations of soluble sugars in relation to a stress-induced early stimulation of sucrose-phosphate synthase activity, while stimulation of invertase and sucrose synthase led to fructose accumulation only at the end of the stress period. We suggested that sugar accumulation may be involved in osmotic adjustment and protection of stressed tissues. A. raddiana was thus able to protect its photosynthetic machinery under drought conditions and may be considered as a promising species for revegetation of dry areas., S. Kebbas, S. Lutts, F. Aid., and Obsahuje bibliografii
The present study was conducted to determine the effect of exogenous application of brassinolide (BR) on Leymus chinensis grown under shade, i.e., control (100% natural light), mild shade (70% natural light), and moderate shade (50% natural light). Shade substantially enhanced the plant growth, synthesis of photosynthetic pigments, photosynthetic efficiency, and chlorophyll (Chl) fluorescence attributes of L. chinensis as compared with control. The order of increase was mild shade > moderate shade > natural light except Chl content, where the order of increase was moderate shade > mild shade > natural light. Likewise, application of BR resulted in further exacerbation of plant height, plant fresh and dry mass, but less in case of Chl and carotenoids contents, gas-exchange characteristics, and Chl fluorescence attributes. The results conclude that shade significantly enhanced plant growth through alterations in physiological attributes of L. chinensis, while, application of BR may not further improve the plant growth under shade., A. J. Yang, S. A. Anjum, L. Wang, J. X. Song, X. F. Zong, J. Lv, A. Zohaib, I. Ali, R. Yan, Y. Zhang, Y. F. Dong, S. G. Wang., and Obsahuje bibliografii
The present study was undertaken to investigate the effect of Glomus mosseae on chlorophyll (Chl) content, Chl fluorescence parameters and chloroplast ultrastructure of beach plum seedlings under 2% NaCl stress. The results showed that compared to control, both Chl a and Chl b contents of NaCl + G. mosseae treatment were significantly lower during the salt stress, while Chl a/b ratio increased significantly. The increase of minimal fluorescence of darkadapted state (F0), and the decrease of maximal fluorescence of dark-adapted state (Fm) and variable fluorescence (Fv) values were inhibited. The maximum quantum yield of PSII photochemistry (Fv/Fm), the maximum energy transformation potential of PSII photochemistry (Fv/F0) and the effective quantum yield of PSII photochemistry (ΦPSII) increased significantly, especially the latter two variables. The values of the photochemical quenching coefficient (qP) and the nonphotochemical quenching (NPQ) were similar between G. mosseae inoculation and noninoculation. It could be concluded that G. mosseae inoculation could protect the photosystem II (PSII) of beach plum, enhance the efficiency of primary light energy conversion and improve the primitive response of photosynthesis under salinity stress. Meanwhile, G. mosseae inoculation was beneficial to maintain the integrity of thylakoid membrane and to protect the structure and function of chloroplast, which suggested that G. mosseae can alleviate the damage of NaCl stress to chloroplast., X. M. Zai ... [et al.]., and Obsahuje bibliografii