Photochemical activity of isolated mesophyll chloroplasts was measured as Hill reaction activity (HRA) and photosystem 1 (PS1) activity in three diallel crosses of maize (Zea mays L.) inbred lines and F1 hybrids. Statistically significant differences between genotypes together with positive heterotic effect in F1 generation were found for both traits studied. These differences were more pronounced when HRA or PS1 activity was expressed per leaf area unit or dry matter unit compared to the expression per chlorophyll content unit. Analysis of variance showed that both the genetic and non-genetic components of variation in the photochemical activity of isolated mesophyll chloroplasts are present in all three diallel crosses examined. The positive heterosis in F1 hybrids probably arises from non-additive genetic effects of a positive dominance type. Additive genetic effects were also statistically highly significant. We found no differences between reciprocal crosses. and D. Holá ... [et al.].
High variability in leaf gas exchange and related traits were found in 30 genotypes of field grown finger millet. The variability in carbon exchange rate per unit leaf area (PN) can be partly attributed to the differences in the stomatal conductance (gs) and area leaf mass (ALM). The PN was positively correlated with total dry matter (TDM). However, no relationship between PN and seed yield was found. The leaf area showed a positive and significant correlation with total biomass. None of the other gas-exchange traits had significant relationship either with TDM or with seed yield. The ALM showed a strong positive association with PN. However, it was not correlated with either total biomass or seed yield. As a result, the use of ALM as surrogate for PN for identifying high biomass producing genotypes only had a limited value. Hence selection for high PN would result in higher biomass producing types.
In a field rain-fed trial with 15 cassava cultivars, leaf gas exchanges and carbon isotope discrimination (Δ) of the same leaves were determined to evaluate genotypic and within-canopy variations in these parameters. From 3 to 7 months after planting leaf gas exchange was measured on attached leaves from upper, middle, and lower canopy layers. All gas exchange parameters varied significantly among cultivars as well as canopy layers. Net photosynthetic rate (PN) decreased from top canopy to bottom indicating both shade and leaf age effects. The same trend, but in reverse, was found with respect to Δ, with the highest values in low canopy level and the lowest in upper canopy. There were very significant correlations, with moderate and low values, among almost all these parameters, with PN negatively associated with intercellular CO2 concentration (Ci), ratio of C i to ambient CO2 concentration C i/C a, and Δ. Across all measured leaves, Δ correlated negatively with leaf water use efficiency (WUE = photosynthesis/stomatal conductance, gs) and with gs, but positively with Ci and Ci/Ca. The later parameters negatively correlated with leaf WUE. Across cultivars, both PN and correlated positively with storage root yield. These results are in agreement with trends predicted by the carbon isotope discrimination model. and M. A. El-Sharkawy, S. M. de Tafur.
The genetic variation in low temperature sensitivity of eight tomato genotypes grown at suboptimal temperature (19 °C) and at low irradiance (140 pmol m'2 s**) was assessed at the plant, chloroplast and thylakoid membrane levels. Temperature effects on the thylakoid membrane were determined by measuring the maximum fluorescence (Fp) and the maximal fluorescence rise (ADP) of induction traces of leaf discs at decreasing temperatures (30, 28, ... 0 °C). Two discontinuities were found in Fp versus temperature curves: a low temperature break at ca. 12 °C (LTB) and a high temperature break at ca. 22 °C (FITB). Below LTB, sFp and sDP were determined as the temperature induced changes in Fp, respectively ADP. Chloroplast functioning was determined by measuring net CO2 fixation rate (E^) of leaves. Plant performance was determined by measuring the increase in leaf area and sho ot dry mass in time. Correlations between the various parameters were analysed across the genotypic variation found. Chlorophyll (Chl) fluorescence parameters were not correlated with plant performance at suboptimal growth conditions. of leaves was correlated with plant performance, but only at ambient CO2. Effects of stomatal resistance on were large. The Chl fluorescence parameters LTB, sFp and sDP could distinguish between tomato genotypes. Nevertheless, the ranking of the genotypes depended on the specific parameter selected, indicating that each parameter assessed a different aspect of the heterogeneous temperature dependence of Chl fluorescence induction. Their genetic variation suggested that the genotypes differed in the organisation and fimctioning of the thylakoid membrane. These differences were not reflected in of leaves or plant performance.
Field trials with a large group of cassava germplasm were conducted at the seasonally-dry and hot environments in southwest Colombia to investigate photosynthetic characteristics and production under drought conditions. Measurement of net photosynthetic rate (PN), photosynthetic nitrogen use efficiency (PNUE), mesophyll conductance to CO2 diffusion (g m), and phosphoenolpyruvate carboxylase (PEPC) activity of upper canopy leaves were made in the field. All photosynthetic characteristics were significantly correlated with final dry root yield (Yield). Correlations among the photosynthetic traits were also significant. PEPC activity was highly significantly correlated with PN and PNUE, indicating the importance of the enzyme in cassava photosynthesis and productivity. Among a small selected group from the preliminary trial for yield performance, the second year Yield was highly significantly correlated with PN measured on the first year crop. Thus variations in the measured photosynthetic traits are genetically controlled and underpin variations in yield. One short-stemmed cultivar M Col 2215 was selected for high root dry matter content, high harvest index, and tolerance to drought. It was tested under the semi-arid conditions of the west coast of Ecuador; participating farmers evaluated cultivar performance. This cultivar was adopted by farmers and officially released in 1992 under the name Portoviejo 650. and M. A. El-Sharkawy, Y. Lopez, L. M. Bernal.
We present here our adventures in research in photosynthesis with George C. Papageorgiou (1933-2020) focusing on George's initiative in the discovery of the protective effects of glycine betaine on the oxygen-evolving photosystem II complex. We end with a brief description of research on glycine betaine-synthesizing transgenic cyanobacteria. Two of us, Norio Murata (in Japan) and Kostas Stamatakis (in Greece), and all our collaborators, have the highest respect for George, and we miss him and our intense discussions with him on various topics of photosynthesis research.
Metabolite changes and senescence behaviour after mechanical phloem girdling were studied in leaf tissue of Quercus pubescens. Sugar accumulation is not only considered to be an important part of several developmental signalling pathways, but is also seen as one of the basic triggers for senescence induction, or at least an obligatory accessory phenomenon. Our survey showed that an accumulation of the soluble sugars, glucose and fructose, was not on its own obligatorily connected with the induction of leaf senescence, since no indication or even an onset of senescence could be observed during the course of the experiment. Instead, we observed an inhibition of leaf development with a decrease of photosynthesis and a slow-down of development in nearly all chlorophyll a fluorescence analysis parameters using the JIP-test. We detected a change of metabolites linked to oxidative stress, possibly due to an overexcitation of the developmentally inhibited photosynthetic apparatus., V. Holland, L. Fragner, T. Jungcurt, W. Weckwerth, W. Brüggemann., and Obsahuje bibliografii