Based on the crystal structure and spectral properties of C-phycocyanin (C-PC) from cyanobacteria, models for complexes with 2 and 3 C-PC hexamer disks were built and the energy transfer dynamic properties were studied by the use of stochastic computer simulation approach. In addition, an experimental parameter of 0.056 ps-1, corresponding to a time constant of 18 ps, derived from the previous time-resolved measurement, was used for simulation of the energy transfer process from the three terminal symmetrically equivalent β84 chromophores of the core-linked disk to an α84 chromophore of the allophycocyanin (APC) core. The simulation showed: (1) The disk-to-disk energy transfer can be as fast as several picoseconds. (2) The energy transfer efficiencies from the first disk to the core would depend on the length of the rod (i.e. the number of disks). Efficiencies of 0.95, 0.87, and 0.75 were found for the rods with 1, 2 and 3 hexamer disks, respectively. (3) The energy transfer along a rod in a native phycobilisome (PBS) is probably very close to the one-way manner. It is the core of PBS that makes the excitation energy be transferred fast in a nearly one-way manner. and Jie Xie, Jing-quan Zhao, Chenghang Peng.
Leaf canopy plays a determining role influencing source-sink relations as any change in source activity (photosynthesis) affects sink metabolism. Defoliation (removal of leaves) influences growth and photosynthetic capacity of plants, remobilizes carbon and nitrogen reserves and accelerates sink metabolism, leading to improved source-sink relations. The response of plants to defoliation could be used to manipulate source-sink relations by removing lower and senescing leaves to obtain greatest photosynthetic capacity and efficient carbon and nitrogen metabolism under optimal and stressful environments. The present work enhances our current understanding on the physiological responses of plants to defoliation and elaborates how defoliation influences growth, photosynthetic capacity and source-sink relations under optimal and changing environmental conditions., N. Iqbal, A. Masood, and N. A. Khan., and Obsahuje bibliografii
Leaf anatomy and eco-physiology of Elymus repens, a temperate loess grassland species, were determined after seven years of exposure to 700 μmol (CO2) mol-1 (EC). EC treatment resulted in significant reduction of stomatal density on both surfaces of couch-grass leaves. Thickness of leaves and that of the sclerenchyma tissues between the vessels and the adaxial surfaces, the area of vascular bundle, and the volumes of phloem and tracheary increased at EC while abaxial epidermis and the sclerenchyma layer between the vessel and the abaxial surface were thicker at ambient CO2 concentration (AC). Stomatal conductance and transpiration rates were lower in EC, while net CO2 assimilation rate considerably increased at EC exposure. Contents of soluble sugars and starch were higher in EC-treated couch-grass leaves than in plants grown at AC. and A. I. Engloner ... [et al.].
This study deals with two short Latin annalistic texts of Czech provenance dating from the turn of the 14th and 15th century which have been written according to two different models on a free place of ms. 5483 in the holdings of the Austrian National Library in Vienna and collected in one series of annals. The article examines the reference of these texts to other similar texts coming from the Czech late middle ages environment. The contents of the Annals is information about the last Přemyslides, genealogic records about Czech Luxemburger, and news about what happened mostly in Prague in the 14th century.
This study deals with two short Latin annalistic texts of Czech provenance dating from the turn of the 14th and 15th century which have been written according to two different models on a free place of ms. 5483 in the holdings of the Austrian National Library in Vienna and collected in one series of annals. The article examines the reference of these texts to other similar texts coming from the Czech late middle ages environment. The contents of the Annals is information about the last Přemyslides, genealogic records about Czech Luxemburger, and news about what happened mostly in Prague in the 14th century.
This study deals with two short Latin annalistic texts of Czech provenance dating from the turn of the 14th and 15th century which have been written according to two different models on a free place of ms. 5483 in the holdings of the Austrian National Library in Vienna and collected in one series of annals. The article examines the reference of these texts to other similar texts coming from the Czech late middle ages environment. The contents of the Annals is information about the last Přemyslides, genealogic records about Czech Luxemburger, and news about what happened mostly in Prague in the 14th century.
At present, research activities on the role of orchard systems in sequestering atmospheric CO2 remain scarce. This paper aimed to contribute to assessing the carbon balance of a Mediterranean olive (Olea europea) orchard. The net ecosystem exchange, the ecosystem respiration and the gross primary production were computed for two consecutive years through eddy covariance, and the different biomass accumulation terms were also inferred in the same period through an inventorial method. The net carbon exchange ranged from 13.45 t(C) ha-1 year-1 to 11.60 t(C) ha-1 year-1. Very similar values [12.2 and 11.5 t(C) ha-1 year-1] were found with the direct carbon accumulation inventory. The intensive farming management (irrigation included) and the young age of the plants (12-16 years old), still in an active growing phase, led the olive plantation to be a higher carbon sink with respect to other evergreen orchards reported in the literature., M. Nardino ... [et al.]., and Obsahuje bibliografii
Anthocyanins and nonphotochemical quenching (NPQ) are two important tools that provide photoprotection in plant leaves. In order to understand how plants use these tools for acclimation to changing seasonal conditions, we investigated pigments, antioxidative capacity, and photosynthesis in leaves of an evergreen tree (Acmena acuminatissima) in two contrasting seasons. Young leaves of A. acuminatissima appeared in distinct colors, being light green in summer and red in winter due to the presence of anthocyanins. In the winter young leaves, anthocyanins contributed less than 2% to the antioxidant pool. In the summer, young leaves had higher NPQ than that of mature leaves, but in the winter, they did not derive any NPQ-related advantage over mature leaves. These results suggest that the accumulation of anthocyanins in young leaves in the winter may compensate for the insufficient photoprotection afforded by NPQ and that anthocyanins function as a light attenuator to protect the photochemical apparatus against excess light., H. Zhu, T.-J. Zhang, J. Zheng, X.-D. Huang, Z.-C. Yu, C.-L. Peng, W. S. Chow., and Obsahuje bibliografické odkazy
Elevated CO2 concentration (700 cm3 m-3, EC) inhibited chill-dependent (7 °C) depression of net photosynthetic rate of two maize hybrids with different sensitivity to low temperature. The rate of superoxide radical formation in leaves, leaf membrane injury, and the decrease in maximal quantum efficiency of photosystem 2 were successfully diminished by the treatment. The protective effect of EC toward stress conditions was prolonged at the recovery phase (20 °C). The genotypic impact on studied parameters was also notable. and R. Bączek-Kwinta, J. Kościelniak.
We studied how the reductions of trienoic fatty acids (TAs) and increases of dienoic fatty acids (DAs) enhanced high-temperature tolerance in antisense expression of tomato chloroplast omega-3 fatty acid desaturase gene (LeFAD7) transgenic tomato (Lycopersicon esculentum Mill.) plants. In transgenic plants, the content of linolenic acid (18:3) was markedly decreased, while linoleic acid (18:2) was increased correspondingly and the similar changes were observed under high-temperature stress as well. Under high-temperature stress, transgenic plants can maintain a relatively higher level of net photosynthetic rate (P N) and chlorophyll (Chl) content than that of wild type (WT) plants. A decreased Chl/Carotenoids (xanthophylls and carotenes, Car) ratio and Chl a/b ratio were observed in transgenic plants. Transgenic plants exhibited visible decrease in the relative electrolyte conductivity, higher activities of antioxidative enzymes and lower reactive oxygen species correspondingly than WT. In addition, high-temperature stress for 24 h caused more extensive changes of chloroplast ultrastructure in WT than in transgenic plants. We therefore suggested that the enhancement of high-temperature tolerance in antisense expression of LeFAD7 transgenic plants might be raised from the reduction of TAs and increase of DAs subsequently leading to series of physiological alterations. and X. Liu ... [et al.].