Although plant performance under elevated CO2 (EC) and drought has been extensively studied, little is known about the leaf traits and photosynthetic performance of Stipa bungeana under EC and a water deficiency gradient. In order to investigate the effects of EC, watering, and their combination, S. bungeana seedlings were exposed to two CO2 regimes (ambient, CA: 390 ppm; elevated, EC: 550 ppm) and five levels of watering (-30%, -15%, control, +15%, +30%) from 1 June to 31 August in 2011, where the control water level was 240 mm. Gas exchange and leaf traits were measured after 90-d treatments. Gas-exchange characteristics, measured at the growth CA, indicated that EC significantly decreased the net photosynthetic rate (PN), water-use efficiency, nitrogen concentration based on mass, chlorophyll and malondialdehyde (MDA) content, while increased stomatal conductance (gs), intercellular CO2 concentration (Ci), dark respiration, photorespiration, carbon concentration based on mass, C/N ratio, and leaf water potential. Compared to the effect of EC, watering showed an opposite trend only in case of PN. The combination of both factors showed little influence on these physiological indicators, except for gs, Ci, and MDA content. Photosynthetic acclimation to EC was attributed to the N limitation, C sink/source imbalance, and the decline of photosynthetic activity. The watering regulated photosynthesis through both stomatal and nonstomatal mechanisms. Our study also revealed that the effects of EC on photosynthesis were larger than those on respiration and did not compensate for the adverse effects of drought, suggesting that a future warm and dry climate might be unfavorable to S. bungeana. However, the depression of the growth of S. bungeana caused by EC was time-dependent at a smaller temporal scale., H. Wang, G. S. Zhou, Y. L. Jiang, Y. H. Shi, Z. Z. Xu., and Obsahuje bibliografii
To analyze acclimation of Euterpe edulis seedlings to changes in light availability, we transferred three-year-old seedlings cultivated for six months under natural shade understory [= 1.3 mol(photon) m-2 d-1] to a forest gap [= 25.0 mol(photon) m-2 d-1]. After the transfer, changes in chlorophyll fluorescence and leaf gas-exchange parameters, as well as in the light-response curves of photosynthesis and photosynthetic induction parameters, were analyzed during the following 110 days. Simultaneously measured photosynthetic characteristics in the shaded seedlings grown in understory served as the control. Despite the fact that the understory seedlings were under suboptimal conditions to achieve their light-saturated net photosynthetic rate (PNmax), light-response curves and photosynthetic induction parameters indicated that the species had the low respiration rate and a fast opening of stomata in response to the intermittent occurrence of sunflecks, which exerted a feed-forward stimulation on PNmax. Sudden exposure to high light induced photoinhibition during the first week after the transfer of seedlings to gap, as it was shown by the abrupt decline of the maximal quantum yield of PSII photochemistry (Fv/Fm). The photoinhibition showed the time-dependent dynamics, as the Fv/Fm of the seedlings transferred to the forest gap recovered completely after 110 days. Furthermore, the net photosynthetic rate increased 3.5-fold in relation to priorexposure values. In summary, these data indicated that more than 21 days was required for the shade-acclimated seedlings to recover from photoinhibition and to relax induction photosynthetic limitations following the sudden exposure to high light. Moreover, the species responded very quickly to light availability; it highlights the importance of sunflecks to understory seedlings., A. O. Lavinsky, F. P. Gomes, M. S. Mielke, S. França., and Obsahuje bibliografii
Net photosynthetic rate (PN) measured at the same CO2 concentration, the maximum in vivo carboxylation rate, and contents of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBPCO) and RuBPCO activase were significantly decreased, but the maximum in vivo electron transport rate and RuBP content had no significant change in CO2-enriched [EC, about 200 µmol mol-1 above the ambient CO2 concentration (AC)] wheat leaves compared with those in AC grown wheat leaves. Hence photosynthetic acclimation in wheat leaves to EC is largely due to RuBP carboxylation limitation. and D.-Y. Zhang ... [et al.].
Wheat (T. durum cvs. HD 4502 and B 449, T. aestivum cvs. Kalyansona and Kundan) and sunflower (Helianthus annuus L. cv. Morden) were grown under atmospheric (360±10 cm3 m-3, AC) and elevated CO2 (650±50 cm3 m-3, EC) concentration in open top chambers for entire period of growth and development till maturity. Leaf net photosynthetic rate (PN) of EC-grown plants of wheat measured at EC was significantly decreased in comparison with AC-plants of wheat measured at EC. Sunflower, however, showed no significant depression in PN in EC-plants. There was a decrease in ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, its activation state and amount in EC-plants of wheat, whereas no significant decrease was observed in sunflower. The above different acclimation to EC in wheat and sunflower was related with saccharide constituents accumulated in the leaves. Under EC, sunflower accumulated in the leaves more starch, whereas wheat accumulated more sugars. and M. C. Ghildiyal, S. Rafique, P. Sharma-Natu.
Plants of Phaseolus vulgaris L. cv. Linden were grown at the current (35 Pa) oř the sub-ambient (20 Pa) partial pressures of CO2 at 29 ± 3 in order to analy2« the photosynthetic acclimatíon to low ambient CO2. No difference was observed in the CO2 response of net photosynthetic rate or leaf conductance (gi) below the CO2 partial pressure measurement of 35 Pa. Above 35 Pa, was depressed in plants grown at 20 Pa CO2 when compared to those grown at 35 Pa CO2. In both treatments, became insensitíve to increasing CO2 above an intercellular partial pressure of 50 Pa, indicating that the capacity of starch and sucrose synthesis to metabolize triose phosphates limited at hi^ measurement CO2. No differences were observed in the ribulose-l,5-bisphosphate carboxylase content, actívity, or actívation statě in plants grown at either CO2 partial pressure. Chlorophyll contents were also equivalent between the treatments. Hence, Uttle modulatíon of enzyme or pigment level follows atmospheric CO2 depletíon, with the possible exception that the capacity of starch and sucrose synthesis may be reduced in plants grown at low CO2.
Our study examined the relationship between photosynthetic performance and activities of key photosynthetic enzymes to understand the photosynthetic variation and reasons for the variation during dormancy induction under different photoperiods in peach (Prunus persica L. cv. Chunjie). Furthermore, the study explained the changes in the key enzymes from the viewpoint of differential proteomics. The results showed that the leaf net photosynthetic rate (PN) and stomatal conductance tended to decrease, while the intercellular CO2 concentration rose, which indicated that the reduced PN resulted from nonstomatal limitation. During the dormancy induction period, the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) declined, which was the main reason for the reduced PN. Two-dimensional electrophoresis maps and differential protein identification demonstrated that the decrease in activity of the photosynthetic enzymes was mainly due to enzymatic degradation. The enzyme degradation by a long-day treatment occurred later and to a lesser degree than that of the short-day treatment. In the long-day treatment, the carboxylation activity of Rubisco was higher than that of the control treatment, and the PEPC activity and the ratio of the PEPC/Rubisco activity were lower than the corresponding activities during the control treatment. These differences under long-day conditions were significant but did not occur in the short-day treatment, suggesting that the C4 pathway might be more active under short-day conditions., H.-S. Zhang, D.-M. Li, Q.-P. Tan, H.-Y. Gao, D.-S. Gao., and Obsahuje bibliografii
Pachyrhizus ahipa (Wedd.) Parodi, originally from Latin America, is an agronomy interesting legume crop due to high seed protein content and saccharides-rich tuber root. Its capacity of adaptation to Mediterranean climate, where heat and water stress are frequently associated, is being tested. Two accessions of P. ahipa (AC 102 and AC 524) differing in field production were compared as concerns the effects of water stress and high temperature on photosynthetic performance. Membrane integrity was also evaluated through electrolyte leakage (injury index, I%), lipid composition, and ultrastructure observations. Short-term heat stress (40 °C) did not affect net photosynthetic rate (PN), stomatal conductance (gs), and most of fluorescence parameters in both accessions, what was consistent with low electrolyte leakage. However, photosynthetic capacity (Pmax) showed a significant reduction, AC 524 being more affected than AC 102. Relative water content (RWC) below 70 % caused a drastic decrease in PN and gs. Fluorescence parameters, Pmax, and I% were affected in the two accessions, which also presented a strong reduction (42 %) in total fatty acids (TFA). Contents of galactolipids were drastically reduced, and changes in their saturation also occurred, namely a decrease in linolenic acid (C18:3) percentage of monogalactosyl-diacylglycerol (MGDG) in both accessions. Thylakoid ultrastructure in AC 524 submitted to drought showed disorganisation of grana stacking. Mitochondria presented signs of injured cristae. When water-stressed plants were subjected to high temperature, photosynthesis and fluorescence parameters did not show significant additional changes in both accessions. The exposure of drought stressed plants to 40 °C further increased electrolyte leakage in AC 524, but not in AC 102. Chloroplasts, mitochondria, and plasmalemma showed an increased disorganisation. Vesicles appeared in the cytoplasm, which became electron-transparent, reflecting a strong reduction in the number of ribosomes. Hence AC 102 was less affected than AC 524 as regards some components of photosynthetic process, namely Pmax and membrane integrity. This could account for its better yield production previously observed in field grown plants. and M. C. Matos ... [et al.].
Differences between photosynthetic characteristics of chlorophyll (Chl) 6-deficient aurea mutant (Su/su) and the green (su/su) variety of Nicotiana tabacum were tested. Fully mature leaves of 3-5-month-old plants grown in potted soil were investigated. Main differences were found as follows: Respective Chl a and b contents were 3 and 5 times lower in aurea plants, while xanthophylls and carotenes contents per unit of Chl were higher. The content of light-harvesting complex (LHC) was lower and LHC composition differed in aurea mutant. PS 1 activity calculated per unit of Chl content was higher in aurea mutant. The green variety showed the lower photosynthetic rates (Pn) at saturating irradiances whether calculated on the Chl or leaf area basis. At excessive light declined with green plants. Carboxylation efficiency (CE) (CO2 response slope of Pjj at low CO2 concentrations) was higher for aurea mutant. Time- integrated intercellular CO2 concentrations derived from ^^C discrimination were higher for aurea mutant (304 cm^ m'^) than for green plants (283 cm^ m'^), which together with higher mean stomatal conductance in aurea matched CE differences.
Differences in leaf traits among the dune species developing along the Latium coast were analysed. Cakile maritima Scop. subsp. maritima, Elymus farctus (Viv.) Runemark ex Melderis subsp. farctus, Ammophila arenaria (L.) Link subsp. australis (Mabille) Lainz, Ononis variegata L., Pancratium maritimum L., Eryngium maritimum L., and Anthemis maritima L. were considered. The considered species showed a similar net photosynthetic rate (PN) and chlorophyll content (Chl) during the year, with a peak from the end of April to the middle of May [13.0±3.6 μmol (CO2) m-2 s-1 and 0.63±0.21 mg g-1, respectively, mean values of the considered species], favoured by air temperature in the range 13.3-17.5°C, and 6% of soil water availability. In June-July, the increase of air temperature (Tmax = 28.4°C), associated with a lower water availability (42 mm, total rainfall of the period) and a 1% of soil water availability determined a significant decrease of P N (59%, mean of the considered species) and Chl (38%), and an increase of the carotenoid (Car)/Chl ratio (59%). The significant correlation between PN and stomatal conductance (gs) (p<0.05) explained 67% of P N variations. Moreover, the correlation between P N and leaf temperature (Tl) underlined that the favourable Tl enabling 90-100% of the highest PN for the considered species was within the range 23.4 to 26.6°C. P N decreased below half of its maximum value when Tl was over 35.8 and 37.4°C for E. farctus subsp. farctus and A. arenaria subsp. australis, respectively and over 32.2°C for the other considered species (mean value). Leaf mass area (LMA) varied from 6.8 ± 0.7 mg cm-2 (O. variegata) to 30.6 ± 1.6 mg cm-2 (A. arenaria). PCA (principal component analysis) carried out using the considered morphological and physiological leaf traits underlined that the co-occurring species were characterised by different adaptive strategies: E. farctus and A. arenaria photosynthesized for a long period also when air temperature was over 35.8 and 37.4°C, respectively, because of their lower transpiration rates [E, 1.4 ± 0.1 mmol (H2O) m-2 s-1], which seemed to be controlled by the highest LMA. On the contrary, A. maritima and C. maritima subsp. maritima had a higher PN (on an average 52% higher than the others) in the favourable period, allowed by the highest succulence index (SI, 85.7 ± 9 mg cm-2) and the lower LMA. The results allowed us to hypothesize that A. arenaria and E. farctus might be at a competitive advantage relative to the other considered species with respect to the increase of air temperature, by their ability to photosynthesize at sufficient rates also during summer. and L. Gratani, L. Varone, M. F. Crescente.
The photosynthetic rate of seed wings developed from sepals was compared with the leaf photosynthetic rate in nine dipterocarp tree species (Dipterocarpus pachyphyllus, Dryobalanops aromatica, Dryobalanops lanceolata, Shorea beccariana, Shorea ferruginea, Shorea macroptera ssp. bailonii, Shorea macroptera ssp. macropterifolia, Shorea pilosa, and Vatica spp.). The wings showed positive photosynthetic activity, but at much lower rates than in the leaves. The daily CO2 uptake of wings showed slightly negative values in diurnal gas exchange measurements, even in D. aromatica that showed the highest photosynthetic capacity of all nine species. This low photosynthetic rate in the wings may be the result of low nitrogen and chlorophyll contents in the wing compared with leaves. However, the wings had a higher C/N ratio than leaves, and were thicker. Hence, dipterocarp wings have physical strength and defence against herbivores as higher priorities than photosynthetic activity. and T. Kenzo ... [et al.].