The effect of three different concentrations of amitrole (AM), a bleaching herbicide affecting carotenogenesis, on chloroplast ultrastructure, photosynthetic pigment contents, and photochemical activity was studied in two maize genotypes differing in photosynthetic characteristics. The content of photosynthetic pigments in leaves of plants treated with low (20 μM) AM concentration was similar to control plants and no damaging effect of the herbicide on the ultrastructure of either mesophyll (MC) or bundle-sheath (BSC) cell chloroplasts was observed. Higher (60 and 120 μM) concentrations of AM caused a significant decrease in the content of carotenoids (especially xanthophylls), which was followed by photooxidative destruction of chlorophylls and some alterations of chloroplast ultrastructure. MC chloroplasts appeared more sensitive to the damaging effect of AM compared to BSC chloroplasts. A significant decrease in the amount of both granal and intergranal thylakoids in MC chloroplasts was observed with the increasing concentration of AM. As regards BSC chloroplasts, rapid decrease in the volume density of starch inclusions was found in plants treated with higher concentrations of AM. When 120 μM AM was used, both MC and BSC chloroplasts contained just a few thylakoid membranes that were strongly altered. The changes in the ultrastructure of MC chloroplasts were accompanied by the changes in their photochemical activity. The formation of chloroplast protrusions after treatment of plants with AM as well as in control plants was also observed. and R. Pechová ... [et al.].
The practicality of the portable, non-destructive type nitrogen meter (Agriexpert PPW-3000) was tested on ten forest species. Also investigated was the potential relationship between leaf nitrogen and chlorophyll (Chl) contents and the readings taken with the PPW-3000 and a Chl meter (SPAD-502). There was a significantly positive correlation between the readings of PPW-3000 and N content in the same leaves, whereas the correlation between leaf Chl content and the PPW-3000 values was less positive. Similarly there was a significant positive correlation between actual Chl content and the SPAD-502 readings and the less positive correlation between actual N content and the SPAD-502 readings. Thus using both the PPW-3000 and SPAD-502 enables to determine leaf N and Chl contents simply and non-destructively in the field. and T. Ichie ... [et al.].
Needle yellowing is a typical symptom of declíning spruce trees [Picea abies (L.) Karst.] which grow at altitudes over 700 m a.s.l. In tiie chloroplasts of yellowing needles the thylakoidal systém was reduced. The contents of chlorophyll (Chl) a, b, carotene (a + |3) and neoxanthin in the needles decreased simultaneously, while lutein and the pigments of the xanthophyll cycle were less affected. Activities of the xanthophyli cycle were inhibited only in the advanced stages of yellowing. Yellowing processes with comparable symptoms could be induced in artificial atmospheres, simulating realistic conditions of pollution. Possible mechanisms accounting for the yellowing process were examined. Fast yellowing events occurred not only under full sunlight, but also imder red radiation (X > 600 ran). Therefore, the excited Chl probably sensitized pigment destruction. As the light-harvesting C\ň-a/b- protein complex of Photosystem 2 lost its photo- and acid-stability before yellowing occiured, chloroplasts were changed from a photostable to a photolabile state.
Changes in the temperature dependence of the maximum carboxylation capacity (VCmax) of Rubisco during thermal acclimation of PN remain controversial. I tested for acclimation of the temperature dependence of VCmax in quinoa, wheat, and alfalfa. Plants were grown with day/night temperatures of 12/6, 20/14, and 28/22°C. Responses of PN to substomatal CO2 (Ci) and CO2 at Rubisco (Cc) were measured at leaf temperatures of 10-30°C. VCmax was determined from the initial slope of the PNvs. Ci or Cc curve. Slopes of linear regressions of 1/VCmaxvs. 1/T [K] provided estimates the activation energy. In wheat and alfalfa the increases in activation energy with growth temperature calculated using Ci did not always occur when using Cc, indicating the importance of mesophyll conductance when estimating the activation energy. However, in quinoa, the mean activation energy approximately doubled between the lowest and highest growth temperatures, whether based on Ci or Cc., J. A. Bunce., and Obsahuje bibliografii
The thermal photoacoustic signal (279 Hz) and the chlorophyll (Chl) fluorescence of radish cotyledons (Raphanus sativus L.) were measured simultaneously. The signals were recorded during a photosynthetic induction with actinic radiation of different quantum fluence rates [20, 200, and 1200 µmol(PAR-quantum) m-2 s-1]. The rise of these signals upon irradiation saturating photosynthesis was followed in the steady state of the induction and during the subsequent dark-recovery (i.e., in dark periods of 1, 5, 15, and 45 min after the induction). From these values various parameters (e.g., quantum yield, photochemical loss, different types of quenching coefficients) were calculated. The results show that heat dissipation detected by photoacoustic measurements is neither low, constant, nor always parallel to Chl fluorescence. Therefore, the thermal signal should always be measured in order to fully understand the way leaves convert energy taken up by PAR absorption. This helps in the interpretation of photosynthesis under different natural and anthropogenic conditions (stress and damage effects).
The relative size of the pool of electrons accumulated in stroma reductants during actinic irradiation, which can be donated to P700+ via the intersystem chain, was estimated after short-term exposure of intact Zea mays leaves to elevated temperatures. When the temperature increased from 25 to 50 °C by 5 °C steps, the relative size of the stroma electron pool went through a maximum at around 30 °C, and decreased gradually thereafter. and Ming-Xian Jin, Hualing Mi.
Thermoluminescence (TL) in green plants arises from charge recombination of charged molecules in the reaction centre (RC) of photosystem 2 (PS2) in chloroplasts. The TL technique is used for detection of alterations in the architecture of PS2 RCs. The donor side 'S-states' and the acceptor side quinone molecules (QA and QB) are involved the charge recombination processes of PS2. High temperature (70-75 °C) glow peaks are also used to detect non-photosynthetic peroxidation processes in thylakoid membranes. The TL peaks with their characteristic charge recombination can be utilised for the study of chloroplast development, ageing, chemical, biotic, and abiotic stress induced alterations in the PS2 RC and for the study of the primary photochemical events of photosynthesis. The technique has been used successfully in the characterisation of transgenic plants in the study of genetically engineered organisms. and A. N. Misra ... [et al.].
The thermoluminescence (TL) emission of photosynthesising materials originates from the recombination of charge pairs created by a previous excitation. Using a recently described TL set-up the effect of chilling stress on TL bands occurring at positive temperatures (AG, B, and HTL) was investigated in intact leaves. The far-red irradiation of leaves at low, but non-freezing temperatures induced a TL band peaking at around 40-45 °C (AG band), together with a B band peaking between 20 and 35 °C. Low temperature stress first caused a downshift and a temporary increase in the AG band after 4 h at 0 °C in the light, then a decrease in the AG and B TL bands after 1 d at 0 °C in the light. This decrease was less pronounced in cold-tolerant genotypes and in those grown at acclimating temperatures. Furthermore, an additional band appeared above 80 °C after severe cold stress. This band indicates the presence of lipid peroxides. Thus TL is a useful technique for studying the effects of low temperature stress. and T. Janda, G. Szalai, E. Páldi.