We compared the photosynthetic traits in response to soil water availability in an endangered plant species Mosla hangchowensis Matsuda and in a weed Mosla dianthera (Buch.-Ham.) Maxim. The highest diurnal mean net photosynthetic rate (PNmean), stomatal conductance (gs), and water use efficiency (WUE) of both species occurred at 60 % soil water holding capacity (WHC), while the lowest values occurred at 20 % WHC. The PNmean, gs, and chlorophyll (Chl) a and b contents of M. hangchowensis were lower than those of M. dianthera, while the physiological plasticity indices were higher than those of M. dianthera. M. hangchowensis had strong adaptability to the changing soil water status but weak extending population ability in its habitats because of the low PNmean, which may be one of the causes of its endangerment. and Y. Ge ... [et al.].
a1_The Pantanal is the largest wetland in the world with extremely high plant and animal diversity, but large areas have been invaded by Vochysia divergens Pohl (Vochysiaceae), a tree that is native to the Amazon Basin, and Curatella americana L. (Dilleniaceae), a tree that is native to the Brazilian savanna (cerrado). V. divergens is reportedly floodadapted, thus its ability to invade the Pantanal may not be surprising, but the invasion of C. americana is counterintuitive, because this species is adapted to the
well-drained soils of the cerrado. Thus, we were interested in comparing the photosynthetic capacity, in terms of CO2 conductance, carboxylation, and electron transport of these species over a seasonal flooding cycle. Given that V. divergens is reportedly flood-adapted, we predicted that this species would have a higher photosynthetic capacity than C. americana, especially under flooding. To test this hypothesis we measured the photosynthetic CO2 response (PN/Cc) of V. divergens and C. americana within 1 year to determine, if photosynthetic capacity varied systematically over time and between species. Contrary to our hypothesis, V. divergens did not always have a higher photosynthetic capacity than C. americana. Rather, species differences were influenced by temporal variations in flooding and the leaf age. Leaf CO2 assimilation and photosynthetic capacity of both species were lower during the flood period, but the differences were not statistically significant. The physiological performance of both species was strongly related to leaf N and P concentrations, but P limitation appeared to be more important than N limitation for these species and ecosystem. Photosynthetic capacity was higher and more stable for V. divergens, but such an advantage did not result in a statistically significant increase in PN., a2_Our results suggest that both species are tolerant to flooding even though they are adapted to very different hydrological conditions. Such physiological plasticity, especially for C. americana, might be a key feature for the ability to survive and persist in the seasonally flooded Pantanal., H. J. Dalmagro ... [et al.]., and Obsahuje bibliografii
In an experimental site for reforestation of degraded area, three-year-old plants of Bertholletia excelsa Humb. & Bonpl. were subjected to different fertilization treatments: T0 = unfertilized control, T1 = green fertilization (branches and leaves) and T2 = chemical fertilization. Higher net photosynthetic rates (PN) were observed in T1 [13.2±1.0 μmol(CO2) m-2 s-1] compared to T2 [8.0±1.8 μmol(CO2) m-2 s-1] and T0 [4.8±1.3 μmol(CO2) m-2 s-1]. Stomatal conductance (g s), transpiration rate (E) and water use efficiency (WUE) of individuals of T1 and T2 did not differ significantly, however, they were by 88, 55 and 63%, respectively, higher in T1 than in the control. The mean values of variable fluorescence (Fv), performance index (P.I.) and total chlorophyll [Chl (a+b)] were higher in T1. Our results indicate that green fertilization improves photosynthetic structure and function in plants of B. excelsa in young phase. and M. J. Ferreira, J. F. C. Gonçalves, J. B. S. Ferraz.
Photosynthetic pathway (C3, C4, and CAM) and morphological functional types were identified for the forage species from steppe vegetation in Inner Mongolia, China, using the data from both field survey and references. Of the total 136 identified vascular species, in 29 families and 89 genera, 78 % were found with C3 photosynthesis, including dominant herbs, e.g. Stipa grandis P. Smirn., S. krylovii Roshev., and Leymus chinensis (Trin.) Tzvel. These C3 species covered about 90 % of the total herbage production in the steppe. 20 % were found with C4 photosynthesis and 2 % with CAM photosynthesis. Photosynthetic pathway functional types were coarse and may not fit for the studies and land management in small scales, because of the high C3 photosynthesis composition and the few families in which C4 species occur. Morphological functional types (e.g. shrubs, high perennial grasses, short perennial graminaceous plants, annual grasses, annual forbs, perennial forbs, and succulents) may be practical for spatial and temporal descriptions of steppe ecosystems in local and region scales. Classification for plant functional types, especially morphological types, may contribute to studying the links between plant species and communities, ecosystems, and global changes, and for steppe management decisions in the region.
Photosynthetic pathways (C3, C4, and CAM) and morphological functional types were identified for the species from vegetation in agro-pastoral ecotone, North Beijing. 792 vascular plant species (nearly half of the total species in the ecotone), in 66 families and 317 genera, were identified with C3, C4, and CAM photosynthesis (Table 1). 710 species (90 % of the identified species in Table 1) in 268 genera and 64 families were found with C3 photosynthesis, 68 species (9 % of the total identified species) in 40 genera and 7 families with C4 photosynthesis, and 14 species in 4 genera and 1 family with CAM photosynthesis. Gramineae is the leading family with C4 photosynthesis (43 species), Cyperaceae ranks the second (16 species) followed by Chenopodiaceae (5 species). The significant increase of C4 proportion (C4/total species) with land deterioration suggested the plants of this type are remarkably responsive to land use in the ecotone. 792 species were classified into nine morphological functional types and the changes of most of these types (e.g. perennial forbs (PEF), annual grasses (ANG), and annual forbs (ANF)) were consistent with habitats and vegetation dynamics in the agro-pastoral ecotone. Hence the photosynthetic pathways, combined with the morphological functional types, are efficient indications for studying the linkage between species and ecosystems in the ecotone. and X. Q. Liu, R. Z. Wang.
Foliar δ13C values of Calligogum kozlovi and Haloxylon ammodendron ranged from -13.13 to -15.11 ‰, while those of the rest 11 species were in the range of -22.22 to -27.73 ‰. This indicates that two of 13 dominant plant species in the Qaidam Basin possess a C4 photosynthetic pathway. Significant differences were observed for the average foliar δ13C values between C3 or C4 plant communities, between grass and shrub communities, even between the same species derived from different sites. Precipitation accounted for the major part of the differences. and H. Chen ... [et al.].
Photosynthetic pathway type, based on 5*^C measurements, was determined for 48 species in 39 genera and 15 families of flowering plants from the grassiand region of Northeast China. Of this total, 10 species in 10 genera from 4 families were found to háve C4 photosynthesis; 38 species in 29 genera from 13 families had C3 photosynthesis. One C4 species in the Chenopodiaceae and three in the Gramineae had not been previously docnmented in the literatuře. The C4 species were most frequent in disturbed habitats, meadow steppe and šalině grassiand; C3 species dominated the other habitats sampled.
Photosynthetic pathway types, based on δ13C measurements, were determined for 125 species in 95 genera and 32 families growing in rangelands from Inner Mongolia. Of the total species, 4 species from 3 genera and 2 families had C4 photosynthesis (2 species in Gramineae and 2 in Chenopodiaceae) and 118 species from 90 genera and 31 families had C3 photosynthesis. The number of C4 species differed significantly among four rangeland sites, 4 species in desert, 3 species in steppe, but no C4 species were identified in meadow and dune. Six species [e.g. Agriophyllum arenarium Bieb., Bassia dasyphylla O. Kuntze, Saussurea japonica (Thunb.) DC.] earlier identified as C4 species using the enzyme ratio method were found as C3 species using the carbon isotope ratios (δ13C). Hence the enzyme ratio method for C3 and C4 identification may not always be reliable. The δ13C values of 3 species of Crassulaceae, which had been considered as CAM species, differed remarkably [-25.79 ‰ for Sedum aizoon L., -24.42 ‰ for Osostachys fimbriatus (Turcz.) Berger, and -16.97 ‰ for O. malacophyllus (Pall.) Fisch], suggesting that the use of δ13C method as a diagnosis for CAM photosynthetic pathway type may not always be reliable and supplementary measurements are needed. and X. Q. Liu, R. Z. Wang, Y. Z. Li.
Photosynthetic pathway types (C3 and C4 species) and their dynamics along grazing gradient were determined for 42 plant species in 30 genera and 13 families from the Songnen grassland, Northeastern China. Of the total, 10 species in 9 genera and 4 families had C4 photosynthesis; 32 species in 21 genera and 12 families had C3 photosynthesis. The proportion of C4 species in total plants and C4/C3 increased with grazing intensity, and peaked in overgrazed plot. Most of the increased C4 species (6 of 10) along the grazed gradient were annual grasses and halophytes. This indicated that the C4 species had greater capacity to tolerate environmental stresses (e.g. drought and saline) caused by animal grazing in the Songnen grassland, Northeastern China.
Photosynthetic pathway Types (C3, C4, and CAM) and life forms of native species from Hulunbeier rangelands, north China were studied. Of the total 258 species, 216 species in 132 genera and 42 families had C3 photosynthetic pathway, including dominant herbs, e.g. Stipa baicalensis Roshev. and Leymus chinensis (Trin.) Tzvel., Filifolium sibiricum Kitam. and Arudinella hirta (Thunb.) Koidz. 38 species in 28 genera and 10 families were found with C4 photosynthesis, and 4 species in 2 genera and 1 family had CAM photosynthetic pathway. The occurrence of C4 species was common in Gramineae and Chenopodiaceae, and the two families were leading ones within C4 plants. More than 52 % of the total 258 species were in H form, 21 % in Th form, 19 % in G form; the other life form Types, e.g. Ch, M, N, and HH, formed less than 3 %. 68 % of C4 species were in Th form and 24 % in H form, indicating that these Types were the dominant life forms for C4 species in the rangeland region. The occurrence of C4 species was closely related with plant habitats, disturbed lands had the highest C4 abundance (55 % of the total C4 species), followed by grasslands and sandy soil, and forests had the lowest C4 abundance (8 %). Hence the occurrence of C4 species could be efficient indicator for rangeland dynamics in Hulunbeier rangelands.