The physiological response of two soybean varieties to salt stress was examined. The results showed that salt stress induced a significantly (p<0.01) lower decrease of the net photosynthetic rate (PN) in salt-tolerant S111-9 than in salt-sensitive Glycine max. PN decrease was positively related to the decrease of stomatal conductance (gs) and intercellular CO2 concentration (Ci) in S111-9, while with g s in G. max. a threshold of relative water content (RWC) was found, above which a slight decrease in RWC lead to a sharp reduction in gs. The photochemical quenching (qP), the efficiency of open PSII centers (ΦPSII) and the Rubisco activity (RA) significantly decreased with increasing salinity level in G. max. The maximum PSII quantum yield (Fv/Fm) decreased significantly under the highest NaCl in both varieties. The higher reduction of RA in G. max was attributed to Rubisco content, which was mainly regulated at LSU expression level rather than at rbcL transcript level. These findings led us to conclude that the salt-induced reduction in PN was mainly due gs and RA for S111-9 and G. max, respective. and K. X. Lu ... [et al.].
Photosynthetic characteristics of ear and flag leaves of wheat species, tetraploid Triticum dicoccoides Kom and hexaploid Bima1, were studied in plants grown under well-watered (WW) and water-stressed (WS) conditions. Compared to ears, flag leaves exhibited higher photosynthetic rate (PN) at the filling stage, but more severe decrease under WS. PN in the tetraploid wheat ear remained higher than that in the hexaploid wheat during the grain-filling stage. Water stress decreased PN in both the organs; this decline was caused by a reduction in Rubisco activity, not by drought-induced stomatal limitation. Tetraploid wheat ears exhibited higher relative water content and water-use efficiency than that of hexaploid wheat, under WS. The change in phosphoenolpyruvate carboxylase activity and carbon isotope composition indicated the absence of C4 metabolism in the ears of both species under both conditions. The improved performance of the tetraploid wheat ears under WS was associated with better water relations., Y. P. Li, Y. Y. Li, D. Y. Li, S. W. Wang, S. Q. Zhang., and Obsahuje bibliografii
Pulses of rainfall are particularly pivotal in controlling plant physiological processes in ecosystems controlled by limited water, and the response of desert plants to rainfall is a key to understanding the responses of desert ecosystems to global climatic change. We used a portable photosynthesis system to measure the responses of the diurnal course of photosynthesis, light-response curves, and CO2-response curves of two desert shrubs (Nitraria sphaerocarpa Maxim. and Calligonum mongolicum Turcz) to a rainfall pulse in a desert-oasis ecotone in northwestern China. The photosynthetic parameters, light- and CO2-response curves differed significantly before and after the rainfall pulse. Their maximum net photosynthetic rate (PN) values were 23.27 and 32.92 μmol(CO2) m-2 s-1 for N. sphaerocarpa and C. mongolicum, respectively, with corresponding maximum stomatal conductance (gs) values of 0.47 and 0.39 mol(H2O) m-2 s-1. The PN of N. sphaerocarpa after the rainfall was 1.65 to 1.75 times the value before rainfall, whereas those of C. mongolicum increased to approximately 2 times the prerainfall value, demonstrating the importance of the desert plants response by improving their assimilation rate to precipitation patterns under a future climate., B. Liu, W. Z. Zhao, Z. J. Wen., and Obsahuje bibliografii
We investigated the characteristics of gaseous exchanges and chlorophyll a fluorescence under different irradiances in two liana species Canavalia parviflora Benth. (Fabaceae) and Gouania virgata Reissk (Rhamnaceae), both of a semi-deciduous tropical forest of Southeast Brazil. We used cultivated plants growing under irradiances of 100, 40, 10, and 1.5 % of the photosynthetic photon flux density (PPFD). Higher net photosynthetic rates (PN) were observed during early morning under full sunlight. After this, reduced PN values were recorded due to pronounced stomatal closure. In Canavalia, the gas exchange responses diminished concomitant with reduced irradiance. Gouania exhibited a narrower range of response, with high PN values even at 10 % PPFD. Marked reduction of the effective photochemical yield (ΔF/Fm') near midday was observed, followed by increases in the non-photochemical quenching for both species under full sunlight. Despite the common occurrence of these species in open areas of the forest, both were able to maintain relatively high PN in shaded environments. We suggest that lianas present an intermediate physiological behaviour between shade and non-shade tolerant species. and M. C. Sanches, I. F. M. Válio.
To explore the effects of water column nutrient loading on photosynthesis of the submerged macrophyte Vallisneria natans (Lour.) Hara during the growth season (June to October), we determined the diurnal and seasonal variation in rapid light curves of plants cultivated under 4 different nutrient concentrations (N-P [mg L-1]: (1) 0.5, 0.05; (2) 1.0, 0.1; (3) 5.0, 0.5; (4) 10.0, 1.0). Nutrient concentration significantly affected the magnitude of the rapid light curves of V. natans, but not the direction of their diurnal variations. At low nutrient conditions (N-P 1 [mg L-1]: 0.5, 0.05), the maximum relative electron transport rate (rETRmax) and minimum saturating irradiance (Ek) derived from rapid light curves were significantly lower than those of other treatments, and their seasonal variations were suppressed. These results indicated that photosynthesis of V. natans was inhibited by the lack of nutrients in water column. At high nutrient conditions (N-P 4, [mg L-1]: 10.0, 1.0), there was an increase in photosynthetic rate in the light-limited region of rapid light curve (α), and a decrease in rETRmax and Ek, relative to moderate nutrient conditions (N-P 2, [mg L-1]: 1.0, 0.1). In addition, at high nutrient concentrations, the rapid light curves of V. natans reached a plateau, and then markedly declined compared with those at the lower nutrient levels, especially in July and August. These results suggested that V. natans were adapted to low-light environments in the high-nutrient loading treatment., X. L. Cai ... [et al.]., and Obsahuje bibliografii
Surface sterilised seeds of mungbean (Vigna radiata L. Wilczek cv. T-44) were soaked in 0, 10-8, 10-6, or 10-4 M aqueous solution of 28-homobrassinolide (HBR) for 4, 8, or 12 h. The treated seeds were grown in sandy loam soil filled in earthen pots and sampled at 30, 40, and 50 d. Net photosynthetic rate, leaf chlorophyll content, carbonic anhydrase activity (E.C. 4.2.1.1), carboxylation efficiency, stomatal conductance, and seed yield at harvest were enhanced by the HBR treatment. The best combination was the pre-sowing seed treatment with 10-6 M HBR for 8 h. and Q. Fariduddin, A. Ahmad, S. Hayat.
Wheat (Triticum aestivum L. cv. HD 2329 and DL 1266-5) and sunflower (Helianthus annuus L. cv. MSFH 17 and MRSF 1754) plants were grown in field under atmospheric (360±10 cm3 m-3, AC) and elevated (650±50 cm3 m-3, EC) CO2 concentrations in open top chambers for entire period of growth and development till maturity. Net photosynthetic rate (P N) of wheat cvs. when compared at the same internal CO2 concentration (Ci), by generating PN/Ci curves, showed lower PN in EC plants than in AC ones. EC-grown wheat cultivars also showed a lesser response to irradiance than AC plants. In sunflower cultivars, PN/Ci curves and irradiance response curves were not significantly different in AC and EC plants. CO2 and irradiance responses of photosynthesis, therefore, further revealed a down-regulation of P N in wheat but not so in sunflower under long-term CO2 enrichment. Wheat cvs. accumulated in leaves mostly sugars, whereas sunflower accumulated mainly starch. This further strengthened the view that accumulation of excess assimilates in the leaves under EC as starch is not inhibitory to PN. and V. Pandurangam ... [et al.].
Wheat (Triticum aestivum L. cv. HD 2285) was grown in control (C) and heated (H) open top chambers (OTCs) for entire period of growth and development till maturity. The mean maximum temperature of the entire period was 3 °C higher in H-compared to C-OTCs. Net photosynthetic rate (P N) measured at different temperature (20-40 °C) of C-and H-grown plants showed greater sensitivity to high temperature in H-plants. PN measured at respective growth temperature was lower in H-compared to C-plants. The CO2 and irradiance response curves of photosynthesis also showed lesser response in H-compared to C-plants. The initial slope of PN versus internal CO2 concentration (PN/Ci) curve was lower in H-than C-plants indicating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) limitation. In irradiance response curve, the plateau was lower in H-compared to C-plants which is interpreted as RuBPCO limitation. RuBPCO content in the leaves of C-and H-plants, however, was not significantly different. Ribulose-1,5-bisphosphate carboxylase (RuBPC) initial activity was lower in H-plants, whereas activity of fully activated enzyme was not affected, indicating a decrease in activation state of the enzyme. This was further substantiated by the observed decrease in RuBPCO activase activity in H-compared to C-plants. RuBPCO activase was thus sensitive even to moderate heat stress. The decrease in PN under moderate heat stress was mainly due to a decrease in activation state of RuBPCO catalysed by RuBPCO activase. and P. Pushpalatha, P. Sharma-Natu, M. C. Ghildiyal.
To quantify photosynthetic response of wheat to the combination of a fungal brown rust infection and a post-infection drought, four treatments were compared: no stress (control), fungal stress (FS), water stress (WS), and twofold stress (WS×FS). Predawn leaf water potential (Ψwp) was similar in FS and WS treatments over a 3-week period. In the WS treatment, net photosynthetic rate (PN) and stomata CO2 conductance (gs) diminished concomitantly with a constant intercellular CO2 concentration (Ci) close to 200 µmol mol-1. In the FS treatment, a reduction of PN occurred with an increase in respiration rate (doubling of the CO2 compensation concentration) and in Ci but with no water loss modification. Healthy leaves of infected plants (FS) showed a reduction of PN as well, with constant gs and increased Ci. In the twofold stress treatment (WS×FS), leaves showed reduced PN in relation to the lower Ψwp. Deleterious effects of both drought and fungal infection on the final area of leaves and dry matter were additive. and O. Bethenod, L. Huber, H. Slimi.
Net photosynthetic rate (PN) of Valeriana jatamansi plants, grown under nylon net shade or under different tree canopies, was saturated with photons at 1 000 μmol m-2 s-1 photosynthetic photon-flux-density (PPFD), whereas open-grown plants were able to photosynthesise even at higher PPFD, e.g. of 2 000 μmol m-2 s-1. Plants grown under net shade had higher total chlorophyll (Chl) content per unit area of leaf surface. However, Chl a/b ratio was maximal in open-grown plants, but remained unchanged in plants grown in nylon net shade and under different tree canopies. Sun-grown plants had thicker leaves (higher leaf mass per leaf area unit), higher wax content, and higher PN than shade grown plants. Thus V. jatamansi is able to acclimate to high PPFD and therefore this Himalayan species may be cultivated in open habitat to meet the ever-increasing industrial demand. and S. K. Vats, S. Pandey, P. K. Nagar.