Photosynthetic capacities of green leaves (GL) and green flower petals (GFP) of different ages of the CAM plant Dendrobium cv. Burana Jade were studied through chlorophyll (Chl) content, Chl fluorescence characteristic Fv/Fm, maximal photosynthetic O2 evolution rates (P max), and CAM acidities [dawn/dusk fluctuations in titratable acidity (TA)]. All these photosynthetic parameters were higher in GL than in GFP. Among the different ages of GFP, the young GFP had significant higher readings of all photosynthetic parameters than the oldest GFP, indicating that reduced photosynthesis occurred in the senesced GFP. The source-to-sink relationship between GL and GFP was also studied by comparing the diurnal changes in contents of total soluble and insoluble sugars and TA between the fully irradiated (FI) control (with both irradiated GL and GFP) and GL-darkened plants (covering all GL with aluminium foils, leaving only the GFP exposed to radiation). CAM acidities were much lower in GL darkened with aluminium foils compared to those of FI-GL while there were no differences in CAM acidities of their GFP. The contents of total soluble and insoluble sugars and the CAM acidities of GL towards the end of the day were lower in GL-darkened plants compared to that of FI-plants. Hence CAM acidities of GL depended on their saccharide contents. However, diurnal changes of TA in GFP were similar in all GFP regardless of their ages, with or without GL photosynthetic sources. Thus CAM acidities of GFP are independent of GL saccharides. However, lower saccharide content in GFP (especially the oldest GFP) of GL-darkened plants implies that GFP function as sinks and depend on saccharides exported from GL for its development and growth. and J. He, W. L. Woon.
In this paper, photosynthetic characteristics of green leaves (GL) and green pseudobulbs (GPSB) of C3 orchid Oncidium Golden Wish were first studied. Light saturation for photosynthesis and maximum photosynthetic rates (Pmax) were significantly higher in GL than in GPSB. The results of the optimal PSII quantum yield (Fv/Fm ratio), electron transport rate (ETR), the effective photochemical quantum yield (ΔF/Fm') and nonphotochemical quenching (NPQ) of Chl fluorescence revealed that GPSB had lower light utilization than that of GL. Significantly higher photosynthetic pigments were found in GL than in GPSB. Alteration of source/sink ratio had no impact on all photosynthetic parameters for both GL and GPSB after a short term of 3 days or even a long term of 2 weeks of treatments although there were significant decreases in GL carbohydrate concentration of GL-darkened plants by the end of the day. However, decreases of all photosynthetic parameters of GL were observed in GL-darkened plants after 4 weeks of treatment compared to those of fully illuminated (FI) and GPSB-darkened plants. These results indicate that the level of carbohydrates in GL plays an important role in regulating their photosynthesis. Due to their lower photosynthetic capacities, GPSB function mainly as sinks. Darkening GPSB up to 2 weeks did not affect their own Pmax and the Pmax of GL and thus, did not result in significant decreases of total carbohydrate concentration of GPSB. As GPSB store a large amount of carbohydrates, it could also act as a source when the level of carbohydrates decreased. Thus, GL could depend on GPSB carbohydrates to regulate their photosynthesis when their source capacity was removed. However, 4 weeks after treatments, photosynthetic capacities of GL were significantly lower in GL- and GPSB-darkened plants than in FI plants, which could be due to the lower total soluble and insoluble sugar concentrations of both GL and GPSB in these plants. and J. He, B. H. G. Tan, L. Qin.
The objective of this study was to assess genotypic variation in soybean chlorophyll (Chl) content and composition, and to test if these data could be used as a rapid screening method to predict genotypic variation in leaf tissue N content. Chl contents and composition were examined among 833 soybean (Glycine max L. Merr.) accessions and related to SPAD meter readings and leaf N content. In the initial year of the study (2002), the relationship between leaf Chl and leaf N contents (r 2 = 0.043) was not sufficiently close for Chl to be useful as a predictive tool for leaf N content. Therefore, leaf N content was not determined in 2004 but samples were again collected for determination of Chl content and composition. In 2002, the soybean accessions separated into two distinct groups according to leaf Chl a/b ratios, with the majority of a mean ratio of 3.79. However, approximately 7 % (60) of the genotypes could be readily assigned to a group with a mean Chl a/b ratio of 2.67. Chl a/b analyses in 2004 confirmed the results obtained in 2002 and of 202 genotypes, all but 6 fell into the same group as in 2002. and F. B. Fritschi, J. D. Ray.
Soybean [Glycine max (L.) cv. Jack] grown in open top chambers under controlled laboratory and field conditions was ušed to study the acclimation of leaf gas exchange processes to CO2 enrichment. Air inside the open top chambers was maintained at either 700-800 or 350-400 pmol(C02) mol'^(air). Leaf gas exchange rates were measured for some plants switched between treatments. When measmed in the C02-emiched atmosphere, stomatal conductances (gg) were higher in leaves grown in C02-enriched atmospheres than in those grown under ambient conditions, and the lower gg values for plants in the C02-enriched atmospheres were limiting to leaf net photosynthetic CO2 exchange rates (Pn). of enriched leaves was higher than those of the ambient Controls when measured at elevated CO2 levels in both controlled environment and field studies, while it was depressed in enriched leaves when measured imder ambient CO2 conditions, and this drop in Pn did not recover until 6-15 d after plants were placed back in ambient conditions.
Spatial and temporal variations in light-saturated photosynthetic capacity and needle nitrogen (N) content were investigated in one
8 m tall Japanese cedar (Cryptomeria japonica D. Don) canopy for a full year. The photosynthetic capacity and needle N content in various layers of the canopy were measured every month. Temporal variations in photosynthetic capacity and needle N content expressed on a projected-area basis (Parea, Narea) were similar. Furthermore, both Parea and Narea decreased with increasing depth from the top of the canopy on each sampling date. As a consequence, a significant correlation was observed between Narea and Parea. Temporal variations in photosynthetic capacity and needle N content expressed on a mass basis (Pmass, Nmass) were also similar. Pmass also decreased with increasing canopy depth. However, in contrast to Narea, there was only a slight decrease in Nmass with increasing canopy depth. Hence, the correlation between Nmass and Pmass was lower than the projected-area value. Because Narea was highly correlated with the needle mass per projected-area (NMA), the spatial variation in Narea (and therefore Parea) in the canopy is attributed to the variation in NMA, which decreases as the depth from the top of the canopy increases. Furthermore, the slope of the linear regression between Narea and NMA differed between sampling dates, indicating that the temporal variations in Narea (and therefore Parea) are strongly influenced by Nmass. For most of the sampling dates, a linear regression between Narea and Parea tends to converge into a single line segment. However, on several sampling dates, there was a pronounced decline in Parea below this line segment. This reduction in Parea, which does not accompany a reduction in Narea, seems to be attributable to stomatal limitations induced by the low soil temperature in winter and early spring. and H. Kobayashi, S. Inoue, K. Gyokusen
Diumal changes in chlorophyll (Chl) a fluorescence characteristics of sun-exposed and shade leaves of some tropical and temperate tree species growing under fíeld conditions on sunny and cloudy days during summer were recorded. Significant reduction in photochemical efficiency of photosystem (PS) 2 measured as ratio during periods of maximum irradiance was observed in sun-exposed leaves of some plants. The extent of this reduction was probably a function of the plant species. Among the tropical species tested, Boehmeria rugulosa, Celíis ausíralis, Dalbergia sissoo, Eugenia jambolana and Grewia optiva showed maximum reduction (15-22 %), whereas species like Ficus racemosa and Sapium sebiferum showed least dechne (< 7 %) in the F^/F^ ratio. On the other hand, no significant reduction in this ratio was observed in Bauhinia purpurea. Temperate species, v/z. Acer oblongum and Aesculus indica, were most susceptible to high irradiances. Prolonged exposure of these plants to high irradiances resulted in lesion development in their leaves characterized by reduction in pigment contents and Fy/F^, ratio. Plant species with considerable midday dechne in Fy/Fn, ratio showed (7) slight but significant rise in initial fluorescence (Fq), (2) pronounced decrease in F^ value, and (3) significant reduction in area over the curve between Fq and Fj„ indicating the pool size of electron acceptors on the reducing side of PS2. The depression in Fy/F^ ratio though reversible could not be alleviated even after watering the plants at hourly intervals. No reduction in Fy/F^, was observed in shade leaves of the same plants and/or when measurements were taken on cloudy days. Hence high solar radiation and high atmospheric evaporative demand existing during summer period could probably be the major contributoiy factors for this reduction.
Exposure of thylakoid membranes to high temperature in dark leads to the degradation of D1 protein. Maximum degradation of D1 protein occurred at 45 °C. Using N-terminal specific D1 antibody, a 23 kDa fragment of D1 protein was detected. The degradation of D1 protein could be prevented both by radical scavengers and inhibitors of serine protease and metallo-protease. These results suggest that degradation of D1 protein during exposure of thylakoid membranes to high temperature in dark is catalyzed by protease. and A. K. Singh, G. S. Singhal.
Cistus salvifolius L. is the most widely spread Cistus species around the Mediterranean basin. It colonizes a wide range of habitats growing from sea level to 1,800 m a.s.l., on silicolous and calcicolous soils, in sun areas as well as in the understory of wooded areas. Nevertheless, this species has been mainly investigated in term of its responsiveness to drought. Our aim was to understand which leaf traits allow C. salvifolius to cope with low-light environments. We questioned if biochemical and physiological leaf trait variations in response to a reduced photosynthetic photon flux density were related to leaf morphological plasticity, expressed by variations of specific leaf area (SLA) and its anatomical components (leaf tissue density and thickness). C. salvifolius shrubs growing along the Latium coast (41°43'N,12°18'E, 14 m a.s.l., Italy) in the open and in the understory of a Pinus pinea forest, were selected and the relationships between anatomical, gas exchange, chlorophyll (Chl) fluorescence, and biochemical parameters with SLA and PPFD variations were tested. The obtained results suggested long-term acclimation of the selected shrubs to contrasting light environments. In high-light conditions, leaf nitrogen and Chl contents per leaf area unit, leaf thickness, and Chl a/b ratio increased, thus maximizing net photosynthesis, while in shade photosynthesis, it was downregulated by a significant reduction in the electron transport rate. Nevertheless, the increased pigment-protein complexes and the decreased Chl a/b in shade drove to an increased light-harvesting capacity (i.e. higher actual quantum efficiency of PSII). Moreover, the measured vitality index highlighted the photosynthetic acclimation of C. salvifolius to contrasting light environments. Overall, our results demonstrated the morphological, anatomical, and physiological acclimation of C. salvifolius to a reduced light environment., G. Puglielli, L. Varone, L. Gratani, R. Catoni., and Obsahuje bibliografii
Clover seedlings were grown at different nitrogen concentrations (5, 10, 15, 20, 25 mM NO3 -, i.e. N5 to N25) and two irradiances, I (200 and 400 µmol m-2 s-1 of photon flux density, i.e. I 200 and I 400). Net photosynthetic rate (PN), photosynthetic nitrogen use efficiency (PNUE), leaf chlorophyll (Chl) content, maximum photochemical efficiency (Fv/Fm), and actual photochemical efficiency of photosystem 2 (PS2) (ΦPS2) increased from N5 to N15 and decreased with N15 to N25. P N, PNUE, and ΦPS2 were higher at I 400 than at I 200, but Fv/Fm and leaf Chl contents at I 400 were lower than at I 200. The effects of the N and I on specific leaf area (SLA) and N contents per unit dry mass (Nm) were similar, the SLA and Nm increased from N5 to N25 and they were higher at I 200 than at I 400. The nitrogen contents per unit area (Na) increased from N5 to N20, but decreased from N20 to N25. The Na was higher at I 200 than at I 400 when Trifolium repens grew at N5 and N10, but it was higher at I 400 than at I 200 at N15 to N25. and H. An, Z. P. Shangguan.
Gloiopeltis furcata (Postels & Ruprecht) J. Agardh, a macroalga, which grows in an upper, intertidal zone, can withstand drastic environmental changes caused by the periodic tides. In this study, the photosynthetic and morphological characteristics of G. furcata were investigated. The photosynthetic performance and electron flows of the thalli showed significant variations in response to desiccation and salinity compared with the control group. Both PSII and PSI activities declined gradually when the thalli were under stress. However, the electron transport rate of PSI showed still a low value during severe conditions, while the rate of PSII approached zero. Furthermore, PSI activity of the treated thalli recovered faster than PSII after being submerged in seawater. Even though the linear electron flow was inhibited by DCMU [3-(3, 4-dichlorophenyl)-1,1-dimethylurea], the cyclic electron flow could still be restored. The rate of cyclic electron flow recovery declined with the increasing time of dark treatment, which suggested that stromal reductants from starch degradation played an important role in the donation of electrons to PSI. This study demonstrated that PSII was more sensitive than PSI to desiccation and salinity in G. furcata and that the cyclic electron flow around PSI played a significant physiological role. In addition, G. furcata had branches, which were hollow inside and contained considerable quantities of funoran. These might be the most important factors in allowing G. furcata to adapt to adverse intertidal environments., L. Huan, S. Gao, X. J. Xie, W. R. Tao, G. H. Pan, B. Y. Zhang, J. F. Niu, A. P. Lin, L. W. He, G. C. Wang., and Obsahuje bibliografii