A field study was conducted with the aim to elucidate photosynthetic responses of five emmer hulled wheat (Triticum turgidum ssp. dicoccum) accessions to 30 (N-limited) and 100 kg(N) ha-1
(N-sufficient) conditions at control and drought stress (irrigation after 30-40% and 60-70% depletion of available soil water, respectively). Chlorophyll (Chl) a and Chl b concentrations of the emmer wheats remained unchanged but net photosynthetic rate and dry mass increased and decreased, respectively, when received a sufficient amount of N. Smaller drought-induced decreases in Chl concentration, membrane stability index, and dry mass were concomitant to a greater decrease in intercellular CO2 concentration of emmer compared to the durum (Triticum turgidum) and bread wheats (Triticum aestivum). The lack of negative effect of insufficient N on Chl concentration and dry mass of emmer wheat suggests that this type of wheat possesses an obvious potential for organic farming., M. Vaghar, P. Ehsanzadeh., and Obsahuje bibliografii
The aim of study was to gain a deeper knowledge about local and systemic changes in photosynthetic processes and sugar production of pepper infected by Obuda pepper virus (ObPV) and Pepper mild mottle virus (PMMoV). PSII efficiency, reflectance, and gas exchange were measured 48 and/or 72 h after inoculation (hpi). Sugar accumulation was checked 72 hpi and 20 d after inoculation (as a systemic response). Inoculation of leaves with ObPV led to appearance of hypersensitive necrotic lesions (incompatible interaction), while PMMoV caused no visible symptoms (compatible interaction). ObPV (but not PMMoV) lowered Fv/Fm (from 0.827 to 0.148 at 72 hpi). Net photosynthesis decreased in ObPV-infected leaves. In ObPV-inoculated leaves, the accumulation of glucose, fructose, and glucose-6-phosphate was accompanied with lowered sucrose, maltoheptose, nystose, and trehalose contents. PMMoV inoculation increased the contents of glucose, maltose, and raffinose in the inoculated leaves, while glucose-6-phosphate accummulated in upper leaves., A. Janeczko, M. Dziurka, G. Gullner, M. Kocurek, M. Rys, D. Saja,
A. Skoczowski, I. Tóbiás, A. Kornas, B. Barna., and Obsahuje bibliografii
Increase of harmful radiation to the Earth’s surface due to ozone depletion results in higher exposure to harmful ultraviolet- B radiation (UV), while fluctuations in seawater salinity may alter water density, ionic concentration, nutrient uptake, and osmotic pressure. This study evaluated the effects of salinity and UV on metabolism and morphology of Acanthophora spicifera (M.Vahl) Børgesen. Water with 30 and 37 psu [g(salt) kg-1(sea water)] was used for experiments during 7 d of exposure to UV (3 h per day). We demonstrated that UV treatment predisposed, irrespective of salinity, A. spicifera to a decrease in its growth rate and cell viability, as well as affected its morphological parameters. After exposure to PAR + UVA + UVB (PAB), samples showed structural changes and damage, such as increasing cell wall thickness and chloroplast disruption. Our results indicate that UV led to dramatic metabolic changes and cellular imbalances, but more remarkable changes were seen in samples exposed to high salinity., D. T. Pereira, C. Simioni, L. C. Ouriques, F. Ramlov, M. Maraschin, N. Steiner, F. Chow, Z. L. Bouzon, É. C. Schmidt., and Obsahuje bibliografii
Both amphibious species, Myosotis scorpioides and Ranunculus trichophyllus, thrive in a stressful environment (alternated flooding and drying), which is variable regarding water and radiation regimes. Plants from the field and plants grown under controlled water table maintained at 40 cm were analysed for content of chlorophyll (Chl) and UV-B screening compounds, and the efficiencies of PS2 and electron transport systems. We detected no significant differences in contents of Chl and UV-B screening compounds between submerged and aerial leaves. The measurements of respiratory potential and photochemical efficiency revealed the presence of permanent stress in M. sporpioides in the natural environment. Differences in physiological responses of submerged and aerial leaves indicated that the terrestrial environment was more favourable for M. scorpioides than for R. trichophyllus. Characteristics of both species suggested that R. trichophyllus might be a phylogenetically older aquatic plant than M. scorpioides. and M. Germ, A. Gaberščik.
Measurements of CO2 and H2O fluxes were carried out using two different techniques-eddy-covariance (EC) and open system gas exchange chamber (OC)-during two-years' period (2003-2004) at three different grassland sites. OC measurements were made during fourteen measurement campaigns. We found good agreement between the OC and EC CO2 flux values (n = 63, r 2 = 0.5323, OC FCO2 = -0.6408+0.9508 EC FCO2). The OC FH2O values were consistently lower than those measured by the EC technique, probably caused by the air stream difference inside and outside the chamber. Adjusting flow rate within the chamber to the natural conditions would be necessary in future OC measurements. In comparison with EC, the OC proved to be a good tool for gas exchange measurements in grassland ecosystems. and J. Balogh ... [et al.].
Diurial variations in leaf conductance for water vapour (g^), and in rates of net photosynthesis (P^) transpiration (P) were investigated for individual Fagus crenata, Ginkgo biloba and Alnus firma trees during the growing season (May 12, June 3, August 19 and October 22, 1992), to defme the effects of main climatic factors limiting the photosynthetíc capacity of leaves. Measurements were undertaken at 1 h intervals in fully expanded leaves from 04.00 to 20.00 under sunny day and favourable water supply. Diumal patterns of gg and P^ in F. crenata were similar to G. biloba, showing strong dependence on irradiance in the early moraing and early evening, in May, June and August. The maximum values of P^, gg and water-use eíTiciency (WLIE) were recorded at 07.00 to 08.00 when photosynthetícally active radiation (PAR) and leaf temperature (Zj) were approximately 1200 pmol m'^ s"' and below 25 °C, respectively. P^, gg and WUE decreased from 08.00 to 13.00 contínuously, followed by a slight recovery at about 17.00 and a steep dechne until darkness. A. firma remained at maximum P^ from 07.00 to 14.00, and P^, gg and E were much higher than for the other two species. The peak of E in all three species always occurred at midday, coincident with maximum PAR and highest Ty But in October, P^ and E in all three species were highest around noon, also parallel to the maximum PAR and Ty
The seedlings of wheat were treated by salt-stress (SS, molar ratio of NaCl: Na2SO4 = 1:1) and alkali-stress (AS, molar ratio of NaHCO3: Na2CO3 = 1:1). Relative growth rate (RGR), leaf area, and water content decreased with increasing salinity, and the extents of the reduction under AS were greater than those under SS. The contents of photosynthetic pigments did not decrease under SS, but increased at low salinity. On the contrary, the contents of photosynthetic pigments decreased sharply under AS with increasing salinity. Under SS, the changes of net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were similar and all varied in a single-peak curve with increasing salinity, and they were lower than those of control only at salinity over 150 mM. Under AS, PN, gs, and E decreased sharply with rising salinity. The decrease of gs might cause the obvious decreases of E and intercellular CO2 concentration, and the increase of water use efficiency under both stresses. The Na+ content and Na+/K+ ratio in shoot increased and the K+ content in shoot decreased under both stresses, and the changing extents under AS were greater than those under SS. Thus SS and AS are two distinctive stresses with different characters; the destructive effects of AS on the growth and photosynthesis of wheat are more severe than those under SS. High pH is the key feature of the AS that is different from SS. The buffer capacity is essentially the measure of high pH action on plant. The deposition of mineral elements and the intracellular unbalance of Na+ and K+ caused by the high pH at AS might be the reason of the decrease of PN and gs and of the destruction of photosynthetic pigments. and C. W. Yang ... [et al.].
The effects of potassium (K) deficiency on chlorophyll (Chl) content, photosynthetic gas exchange, and photosystem II (PSII) photochemistry during the seedling stage were investigated in two soybean [Glycine max (L.) Merr.] cultivars, low-K sensitive Tiefeng31 and low-K tolerant Shennong6. The cultivars were grown hydroponically in K-sufficient (KS) and K-deficient (KD) solutions. Photosynthetic gas exchange and Chl content in Tiefeng31 were severely affected by the low K condition, but were almost unaffected in Shennong6. This difference is in accordance with the PSII photochemistry in the plants, indicating that the photosynthetic apparatus of Shennong6 is more tolerant to low-K stress than that of Tiefeng31. and X.-T. Li ... [et al.].
The rare and endangered plant, Begonia fimbristipula, shows red and green phenotypes, differentiated by a coloration of the abaxial leaf surface. In this study, we compared morphological and physiological traits of both phenotypes. The results showed that the red phenotype contained a significantly higher chlorophyll content, closer arrangement of chloroplasts, and a more developed grana. In addition, the red phenotype transferred significantly more light energy into the electron transport during the photoreaction. Similarly, the maximum photosynthetic rate, instantaneous water-use and light-use efficiencies of the red B. fimbristipula were all significantly higher than those of the green individuals. The differentiation between these two phenotypes could be caused by their different survival strategies under the same conditions; epigenetic variations may be in some correlation with this kind of phenotype plasticity. Red B. fimbristipula has an advantage in resource acquisition and utilization and possesses a better self-protection mechanism against changes in environmental conditions, therefore, it might adapt better to global climate change compared to the green phenotype. Further studies on the possible epigenetic regulation of those phenotypic differentiations are needed., Y. Wang, L. Shao, J. Wang, H. Ren, H. Liu, Q. M. Zhang, Q. F. Guo, X. W. Chen., and Seznam literatury
The parameters estimated from traditional A/Ci curve analysis are dependent upon some underlying assumptions that substomatal CO2 concentration (Ci) equals the chloroplast CO2 concentration (Cc) and the Ci value at which the A/Ci curve switches between Rubisco- and electron transport-limited portions of the curve (Ci-t) is set to a constant. However, the assumptions reduced the accuracy of parameter estimation significantly without taking the influence of Ci-t value and mesophyll conductance (gm) on parameters into account. Based on the analysis of Larix gmelinii's A/Ci curves, it showed the Ci-t value varied significantly, ranging from 24 Pa to 72 Pa and averaging 38 Pa. t-test demonstrated there were significant differences in parameters respectively estimated from A/Ci and A/Cc curve analysis (p<0.01). Compared with the maximum ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate (Vcmax), the maximum electron transport rate (Jmax) and Jmax/Vcmax estimated from A/Cc curve analysis which considers the effects of gm limit and simultaneously fits parameters with the whole A/Cc curve, mean Vcmax estimated from A/Ci curve analysis (Vcmax-Ci) was underestimated by 37.49%; mean Jmax estimated from A/Ci curve analysis (Jmax-Ci) was overestimated by 17.8% and (Jmax-Ci)/(Vcmax-Ci) was overestimated by 24.2%. However, there was a significant linear relationship between Vcmax estimated from A/Ci curve analysis and Vcmax estimated from A/Cc curve analysis, so was it Jmax (p<0.05). and W. Zeng ... [et al.].