Significant part of our work was developing a new type of CO2 and H2O gas exchange chambers fit for measuring stand patches. Ground areas of six chambers (ranged between 0.044-4.531 m2) constituted a logarithmic series with doubling diameters from 7.5 to 240.0 cm. We demonstrate one of the first results for stand net ecosystem CO2 exchange (NEE) rates and temporal variability for two characteristic Central European grassland types: loess and sand. The measured mean NEE rates and their ranges in these grasslands were similar to values reported in other studies on temperate grasslands. We also dealt with the spatial scale dependence from ecophysiological point of view. Our chamber-series measurement was performed in a perennial ruderal weed association. The variability of CO2-assimilation of this weed vegetation showed clear spatial scale-dependence. We found the lowest variability of the vegetation photosynthesis at the small-middle scales. The results of spatial variability suggest the 0.2832 m2 patch size is the characteristic unit of the investigated weed association and there is a kind of synphysiological minimi-area with characteristic size for each vegetation type. and Sz. Czóbel ... [et al.].
Measurements of CO2 and H2O fluxes were carried out using two different techniques-eddy-covariance (EC) and open system gas exchange chamber (OC)-during two-years' period (2003-2004) at three different grassland sites. OC measurements were made during fourteen measurement campaigns. We found good agreement between the OC and EC CO2 flux values (n = 63, r 2 = 0.5323, OC FCO2 = -0.6408+0.9508 EC FCO2). The OC FH2O values were consistently lower than those measured by the EC technique, probably caused by the air stream difference inside and outside the chamber. Adjusting flow rate within the chamber to the natural conditions would be necessary in future OC measurements. In comparison with EC, the OC proved to be a good tool for gas exchange measurements in grassland ecosystems. and J. Balogh ... [et al.].
Interspecific competition between fat hen (Chenopodium album L.) and sunflower (Helianthus annuus L. NSH-33 hybrid) in pure and mixed stands of identical plant density (35 x 35 cm spacing) was studied in smáli plot field experiments under drought stress. Decrease in net photosynthetic rate (E^) due to interspecific competition was not statistically significant in either species in the first part of the growing season. During drought stress, however, significantly decreased in sunflower, while it hardly changed in C. album in the same (interspecific) competition situation. In pure stands, transpiration rate (E) was lower in C. album than in sunflower and this difference was more pronoímced in mixed stands. Consequently, C. album showed a very high water use efficiency (WUE) especially in the shade layer, which accounts for a larger part of the canopy in this species. By contrast, WUE in sunflower decreased, especially in the sun layer of the mixed stand. Interspecific competition reduced the total biomass more severely in sunflower than in C. album by the end of the growing season. The reduction was especially remarkable in the biomass of the reproductive organs. Reproductive effort expressed as reproductive allocation was higher in C. album than in sunflower. Hence the reproductive effort in sunflower and C. album in both intra- and interspecific competition seemed to be correlated with WUE, which is a prime characteristic of drought stress tolerance.
Net photosynthesis (Pn)> transpiration (£) and water use efficiency (WUE) responses to prolonged drought and subsequent recovery after rewatering were investigated in sun and shade leaves of two maize (Zea mays L. cv. Pioneer 3839 SC) stands with different plant density (6.2 and 10.8 plants per m^). Drought stress was induced by the very smáli amount of precipitation (60 mm) during the 57 d of the study period. was higher in both sun and shade leaves in the low density stand through the study period, presumably owing to higher degree of intraspecific competition in the denser stand. did not decrease under severe drought stress in the sun leaves of the two stands. WUE decreased in sun leaves in both stands. decreased most in the shade leaves of the high density stand, due to less available radiation in this stand. The higher degree of intraspecific competition might also contribute to this. The short- and long-term responses by the stands to irrigation differed greatly, as WUE decreased in the high density stand and increased in the low density stand. Thus was more strongly affected in the high density stand because of the higher degree of interactive drought stress and intraspecific competition concurrently with considerable loss of stomatal control of E.
Net CO2 assimilation rate (PN), stomatal conductance (gs), transpiration rate (E), and water use efficiency (WUE) in four perennial C3 species (grasses: Dactylis glomerata, Festuca rupicola, dicots: Filipendula vulgaris, Salvia nemorosa) grown for 231 d in open-top chambers at ambient (CA, 350 µmol mol-1) or elevated (CE, 700 µmol mol-1) CO2 concentrations were compared. When measured at CE, PN was significantly higher in CE plants of all four species than in the CA ones. The increase in PN was less prominent in the two grasses than in the two dicots. The E was significantly higher in the CE-grass F. rupicola and CE-dicot F. vulgaris than in the CA plants. There was no change in E owing to CE in the other grass and dicot. The gs in F. vulgaris and F. rupicola increased, while there was a decrease in D. glomerata and no change in S. nemorosa. WUE increased in all species grown in CE: four- to five-fold in the dicots and less than two-fold in the grasses. The increase in WUE was primarily due to an increase in PN and not to a decrease in E. and K. Szente, Z. Nagy, Z. Tuba.
The paper presents a simple box model simulating the temporal variation of atmospheric 13CO2 concentration, atmospheric CO2 mixing ratio and 13C content of plant material. The model is driven by observed meteorological and measured biosphere-atmosphere CO2 exchange data. The model was calibrated and validated using measurements from a Hungarian atmospheric monitoring station. The simulated atmospheric stable carbon isotope ratio data agreed well with the measured ratios considering both the magnitude and the seasonal dynamics. Observed deviations between the measured and simulated δ13Cair values were systematically negative in winters, while deviations were random in sign and smaller by an order of magnitude during periods when the vegetation was photosynthetically active. This difference, supported by a significant correlation between the deviation and modeled fossil fuel contributions to CO2 concentration, suggests the increased contribution of 13C-depleted fossil fuel CO2 from heating and the lower boundary layer heights during winter. and D. Hidy ... [et al.].
Tolerance of Festuca rupicola Heuff., Botriochloa ischaemum (L.) Keng., and Salvia nemorosa L. to co-occurring drought, high air temperature and high irradiance were investigated in stands representing different degree of degradation. Air and leaf temperatures were higher for the stands in the advanced degradation stage. The net photosynthetic rate was not significantly lower and WUE was depressed in the degraded stands as compared to the intact stands. Carbon fixation type seems to have outstanding importance in the outcome of degradation processes in semiarid temperate grasslands.
We studied the effects of 15-months of elevated (700 µmol mol-1) CO2 concentration (EC) on the CO2 assimilation rate, saccharide content, and the activity of key enzymes in the regulation of saccharide metabolism (glycolysis and gluconeogenesis) of four C3 perennial temperate grassland species, the dicots Filipendula vulgaris and Salvia nemorosa and the monocots Festuca rupicola and Dactylis glomerata. The acclimation of photosynthesis to EC was downward in F. rupicola and D. glomerata whereas it was upward in F. vulgaris and S. nemorosa. At EC, F. rupicola and F. vulgaris leaves accumulated starch while soluble sugar contents were higher in F. vulgaris and D. glomerata. EC decreased pyrophosphate-D-fructose-6-phosphate l-phosphotransferase (PFP, EC 2.7.1.90) activity assayed with Fru-2,6-P2 in F. vulgaris and D. glomerata and increased it in F. rupicola and S. nemorosa. Growth in EC decreased phosphofructokinase (PFK, EC 2.7.1.11) activity in all four species, the decrease being smallest in S. nemorosa and greatest in F. rupicola. With Fru-2,6-P2 in the assay medium, EC increased the PFP/PFK ratio, except in F. vulgaris. Cytosolic fructose-1,6-bisphosphatase (Fru-1,6-P2ase, EC 3.1.3.11) was inhibited by EC, the effect being greatest in F. vulgaris and smallest in F. rupicola. Glucose-6-phosphate dehydrogenase (G6PDH EC 1.1.1.49) activity was decreased by growth EC in the four species. Activity ratios of Fru-1,6-P2ase to PFP and PFK suggest that EC may shift sugar metabolism towards glycolysis in the dicots. and E. Nádas ... [et al.].
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000-2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (Rs), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were -3.240 and 1.903 μmol m-2 s-1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum Rs were 1.470 and 0.226 μmol(CO2) m-2 s-1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than Rs, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type. and J. Balogh ... [et al.].