Diurnal changes of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity and its content were measured to find the mechanism of RuBPCO activity regulation in Norway spruce needles. Both initial and total RuBPCO activities as well as the activation state had a typical pattern with two peaks in the morning and afternoon, respectively, and a midday depression. On the 19 October, RuBPCO content decreased during the day from 3.1 to 1.4 g m-2, while on the 20 October it was approximately constant both in the morning and in the afternoon (2.7 g m-2). Neither initial nor total activity of RuBPCO copied irradiances. Relatively low morning and evening values of total activities indicate that nocturnal inhibitor CA1P is important in Norway spruce. However, the midday depression of total activity indicates that besides CA1P there function some other inhibitors of RuBPCO. In addition, the diminution of RuBPCO content during the day may indicate repression of its gene expression. and M. Hrstka ... [et al.].
The effects of the diurnal variations in ambient temperature on some C3 and C4 enzymes in the Salsola dendroides and Suaeda altissima species of Chenopodiaceae family were studied during the intensive vegetation period. Activities of phosphoenolpyruvate carboxylase (PEPC) and cytosolic aspartate aminotransferase (AsAT) were shown to decrease in both species in the afternoon and evening. The activity of the mitochondrial AsAT decreased in S. altissima, remained relatively constant in S. dendroides during the day. The activity of alanine aminotransferase was high in the S. dendroides species in the morning and evening and decreased in the S. altissima species by the evening. Glucose-6-phosphate activated PEPC in both species throughout the day. The study of the redox status-regulated C3 enzymes showed temperature-related increases in NADP-glyceraldehyde 3-phosphate dehydrogenase activity in both plants, in fructose-2,6-bisphosphatase activity in the S. altissima species, and in NADP-MDH activity in the S. dendroides species in the afternoon., T. Y. Orujova, S. M. Bayramov, U. A. Gurbanova, H. G. Babayev, M. N. Aliyeva, N. M. Guliyev, Y. M. Feyziyev., and Obsahuje bibliografii
Diurnal variation of gas exchange, chlorophyll (Chl) fluorescence, and xanthophyll cycle components of three maize (Zea mays L.) hybrids released in different years, i.e. Baimaya (1950s), Zhongdan2 (1970s), and Nongda108 (1990s), were compared. On cloudless days, the newer hybrids always had higher net photosynthetic rate (PN), especially at noon, than the older ones. At noon, all the hybrids decreased their maximal yield of photosystem 2 (PS2) photochemistry (Fv/Fm) and actual quantum yield of PS2 (ΦPS2), the newer ones always showing higher values. Generally, the newer hybrids displayed higher photochemical quenching of Chl (qP) and lower non-photochemical quenching (NPQ). The interhybrid differences in PN may be owing to their differential photochemical efficiency. A midday depression in P N occurred in all hybrids, which might be caused by serious photoinhibition or by decreased stomatal conductance. However, midday depression in PN was more obvious in the older hybrids, especially when leaves were senescent. The higher de-epoxidation state of the xanthophylls was noted in older hybrids, which was confirmed by their larger NPQ. The newer maize hybrids did not need a strong de-epoxidation state since they had a better photosynthetic quantum conversion rate and a lower NPQ. and L. Ding ... [et al.].
We hypothesized that decreased stomatal conductance (gs) at elevated CO2 might decrease transpiration (E), increase leaf water potential (ΨW), and thereby protect net photosynthesis rate (PN) from heat damage in maize (Zea mays L) seedlings. To separate long-term effects of elevated CO2, plants grew at either ambient CO2 or elevated CO2. During high-temperature treatment (HT) at 45°C for 15 min, leaves were exposed either to ambient CO2 (380 μmol mol-1) or to elevated CO2 (560 μmol mol-1). HT reduced PN by 25 to 38% across four CO2 combinations. However, the gs and E did not differ among all CO2 treatments during HT. After returning the leaf temperature to 35°C within 30 min, gs and E were the same or higher than the initial values. Leaf water potential (ΨW) was slightly lower at ambient CO2, but not at elevated CO2. This study highlighted that elevated CO2 failed in protecting PN from 45°C via decreasing gs and ΨW., M. N. Qu, J. A. Bunce, Z. S. Shi., and Obsahuje bibliografii
Membrane-bound bicarbonate is believed by some to act as an essential activator of photosystem 2 (PS2) electron transport. Formáte and other inhibitory monovalent anions act by removing bound-bicarbonate. This belief relies to a great extent on the observation that formáte (100 mM) pretreated thylakoids exhibit a non- proportionality between Hill activity (HAR) and chlorophyll (Chl) concentration when preirradiated with bright radiation in reaction mixture that contains only 5 mM formáte. The non-linearity was attributed to a supposed loosening of residual bicarbonate still present after formáte treatment and which would be more abundant at higher Chl concentrations. In repeating this experiment, we observed an increase in HAR at higher Chl concentrations in preirradiated, but also in non-preirradiated samples, the latter were simply left in the dark for 3 min before measurements were made. Therefore, preirradiation is not needed to restore some HAR in formáte pretreated samples; a 3 min wait in the electrode chamber at low formáte concentration is sufficient to partially relieve the formáte inhibition of PS2 activity. Moreover, HAR in samples preirradiated by weak radiation, or not preirradiated at all, was directly proportional to Chl concentration. We can attribute the increase in activity to a dissociation of bound formáte, not necessarily to the effect of residual bicarbonate. Non-linearity in HAR with Chl concentration was found only in high- irradiance pretreated samples. We can attribute this to a greater amount of photoinhibition occurring in the dilute samples, where the effective irradiance was greater. There is no need to postuláte the existence of residual bound bicarbonate to explain these results.
In order to elucidate the effects of chilling-stress at night on photosystem 2 (PS2) efficiency under dim irradiance (DI), mango leaves were chilled to varied extent (8-3 °C) and for varied duration (0-12 h) in growth cabinets in the dark, and then exposed to DI (20 μmol m-2 s-1 PPFD) at each chilling-temperature for 1 h. Chilling in the dark had little effect on Fv/Fm of mango leaves. But both the extent and duration of chilling pre-treatments significantly affected Fv'/Fm' when leaves were exposed to DI. This down-regulation of PS2 efficiency was closely related to xanthophyll de-epoxidation, assessed as photochemical reflectance index (PRI) and calculated from leaf spectral reflectance [(R531 - R570)/(R531 + R570)], and non-photochemical quenching (NPQ). The down-regulation of PS2 is a defence mechanism initiated at predawn in winter to alleviate the damage of PS2 by the sudden and strong irradiation at sunrise. Mango leaves, transferred suddenly from warm and dark room to DI and chilling showed a slight down-regulation of PS2 efficiency, in spite of an increased xanthophyll de-epoxidation. This might have been due to the unavailability of some cofactors required for NPQ. and J.-H. Weng ... [et al.].
Drought was induced in chickpea (Cicer arietinum L.) genotypes (ChK 3226 and ILC 3279) differing in yield capacity. Water stress (S1, RWC around 55-50%; S2, RWC ≤ 40%) drastically reduced stomatal conductance (g s) and net photosynthetic rate (PN) in both genotypes. ILC 3279 showed greater photosynthetic capacity
(Amax) decreases. Maximum PSII photochemical efficiency (Fv/Fm), photochemical quenching (qP), total chlorophylls (Chls) and carotenoids (Cars) content showed stability in both genotypes under stress, but in S2 ILC 3279 presented an increase in basal fluorescence (F0) and a greater reduction in estimation of quantum yield of linear electron transport (Φe) than ChK 3226. Membrane damage evaluated by electrolyte leakage occurred earlier and was greater in ILC 3279. It also presented a decrease of total fatty acids (TFA) along drought, while in ChK 3226 greater amounts of TFA were observed in S1. In rehydration, PN of S1 plants completely recovered (ILC 3279) or remained slightly below control (ChK 3226). As regards S2 plants, ILC 3279 showed stronger PN and gs reductions than ChK 3226, despite both genotypes totally recovered Amax and chlorophyll (Chl) a fluorescence. ChK 3226 recovered more efficiently from membrane damage. Under control conditions, greater amounts of most of the studied soluble metabolites occurred in ChK 3226 plants. Malate and citrate decreased with water stress (S2) in both genotypes. Sucrose and pinitol (that had a higher concentration than sucrose in both genotypes) increased in ILC 3279 (S1 and S2), and decreased in ChK 3226 (S2). In ILC 3279 proline and asparagine followed similar patterns. Genotypes showed a similar shoot dry mass (DM) in control plants, but root DM was higher in ChK 3226. Drought reduced root and shoot DM in ChK 3226 already under S1, while in ILC 3279 root DM was unaffected by drought and shoot biomass decreased only in S2. Root/shoot ratio was always higher in ChK 3226 but tended to decrease under stress, while the opposite was observed in ILC 3279. No pods were obtained from control plants of both genotypes, or droughted ILC 3279 plants. ChK 3226 produced pods under S1 (higher yield) and S2. Under stress conditions, ChK 3226 was less affected in photosynthetic activity and membrane integrity, showing a better tolerance to drought. This agrees with the better yield of this genotype under water stress. Distinct strategies seem to underlie the different physiological responses of the two genotypes to water deficit. In spite of its significant solutes accumulation, ILC 3279 was more affected in photosynthetic activity and membrane integrity during water stress than ChK 3226, which showed better yield, under drought. A relation could not be established between solutes accumulation of ILC 3279 and yield., and M. C. Matos ... [et al.].
The effects of drought on thylakoid acyl lipid composition, photosynthetic capacity (P max), and electrolyte lekage were evaluated in two-months-old peanut cultivars (57-422, 73-30, GC 8-35) growing in a glasshouse. For lipid studies, plants were submitted to three treatments by withholding irrigation: control (C), mild water stress (S1), and severe water stress (S2). Concerning membrane and photosynthetic capacity stability, drought was imposed by polyethylene glycol (PEG 600). In the cv. 73-30 a sharp decrease in the content of thylakoid acyl lipids was observed, already under S1 conditions, whereas cv. 57-422 was strongly affected only under S2. Cv. GC 8-35 had the lowest content of acyl lipids under control conditions, a significant increase under S1 conditions, and only under S2 a decrease occurred. Thus concerning lipid stability, cv. 73-30 was the most sensitive. Among lipid classes, phospholipids and galactolipids were similarly affected, as was MGDG relatively to DGDG. Water deficit imposed by PEG induced a higher increase in electrolyte leakage in cv. 73-30 than in the other cvs. A positive relationship between acyl lipid concentration and membrane integrity was found in all studied cvs. A positive association between acyl lipid concentration, membrane integrity, and P max was found in the cvs. 57-422 and 73-30. and J. A. Lauriano ... [et al.].