Overexpression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) in tomato increased
cis-unsaturated fatty acid content in phosphatidylglycerol (PG) of thylakoid membrane. By contrast, suppressing the expression of LeGPAT decreased the content of cis-unsaturated fatty acid in PG. Under salt stress, sense transgenic plants exhibited higher activities of chloroplastic antioxidant enzymes, lower content of reactive oxygen species (ROS) and less ion leakage compared with the wild type (WT) plants. The net photosynthetic rate (PN) and the maximal photochemical efficiency (Fv/Fm) of photosystem II (PSII) decreased more slightly in sense lines but more markedly in the antisense ones, compared to WT. D1 protein, located in the reactive center of the PSII, is the primary target of photodamage and has the highest turnover rate in the chloroplast. Under salt stress, compared with WT, the content of D1 protein decreased slightly in sense lines and significantly in the antisense ones. In the presence of streptomycin (SM), the net degradation of the damaged D1 protein was faster in sense lines than in other plants. These results suggested that, under salt-stress conditions, increasing
cis-unsaturated fatty acids in PG by overexpression of LeGPAT can alleviate PSII photoinhibition by accelerating the repair of D1 protein and improving the activity of antioxidant enzymes in chloroplasts. and Y. L. Sun ... [et al.].
Low temperature (LT) is one of the major factors that limit crop production and reduce yield. To better understand the cold-tolerance mechanism in the plantains, a sensitive cultivar Williams (Musa acuminata AAA cv. Williams) and a tolerant cultivar Cachaco (Musa paradisiaca ABB cv. Dajiao) were used. LT resulted in increased malondialdehyde (MDA) content, elevated contents of hydrogen peroxide (H2O2) and superoxide radical (O2.-), and decreased photochemical efficiency (Fv/Fm) and net photosynthetic rate (PN), but cv. Cachaco showed better LT tolerance than cv. Williams. After LT treatment for 120 h, total scavenging capability (DPPH. scavenging capability) in Williams showed a significant decrease but no significant alternations was found in Cachaco. Ascorbate peroxidase (APX) and peroxidase (POD) displayed a significant increase but superoxide dismutase (SOD) showed no significant alternations and catalase (CAT) showed a significant decrease in Cachaco after 120 h of LT treatment. All the four antioxidant enzymes above showed a significant decrease in Williams after 120 h of LT treatment. Our results suggest that higher activities of APX, POD, SOD, and DPPH. scavenging capability to a certain extent can be used to explain the higher cold tolerance in the plantain, which would provide a theoretical guidance for bananas production and screening cold-resistant variety. and Q. Zhang ... [et al.].
Fully exposed, senescing leaves of Cornus sanguinea and Parthenocissus quinquefolia display during autumn considerable variation in both anthocyanin and chlorophyll (Chl) concentrations. They were used in this study to test the hypothesis that anthocyanins may have a photoprotective function against photosystem II (PSII) photoinhibitory damage. The hypothesis could not be confirmed with field sampled leaves since maximum photochemical efficiency (Fv/Fm) of PSII was negatively correlated to anthocyanin concentration and the possible effects of anthocyanins were also confounded by a decrease in Fv/Fm with Chl loss. However, after short-term laboratory photoinhibitory trials, the percent decrease of Fv/Fm was independent of Chl concentration. In this case, a slight alleviation of PSII damage with increasing anthocyanins was observed in P. quinquefolia, while a similar trend in C. sanguinea was not statistically significant. It is inferred that the assumed photoprotection, if addressed to PSII, may be of limited advantage and only under adverse environmental conditions. and Y. Manetas, C. Buschmann.
In this work, the injuries caused by clethodim herbicide application as well as the use of exogenous salicylic acid (SA) as a protective agent against clethodim in Zea mays leaves were examined. Although the target for clethodim is the inhibition of acetyl coenzyme A carboxylase (ACCase) which is the key enzyme for fatty acid biosynthesis, it can indirectly affect the photosynthetic machinery, gaseous exchange and some biochemical parameters. Clethodim application caused chlorosis and yellowing of leaf-tip parts. Higher doses caused browning or reddening of leaves and sometimes dead parts of the leaf margins were observed. The rate of photosynthesis was significantly lowered and the pigments content was highly reduced as a response to clethodim spraying. Moreover, other gas-exchange properties were altered. Furthermore, accumulation of high amounts of carbohydrates, proteins and proline were detected. SA spraying three days prior clethodim application caused partially or totally disappearance of clethodim injuries and kept the leaves similar to those of control. Improved photosynthesis and enhanced pigments content were observed in leaves treated with SA. Other analyzed parameters showed values similar to those of the corresponding control. From the experimental work, an evidenced role of SA working against clethodim effects was suggested and discussed in this paper., D. E. M. Radwan, D. M. Soltan., and Obsahuje bibliografii
The cytochrome b6f (Cyt b6f) complex, which functions as a plastoquinol-plastocyanin oxidoreductase and mediates the linear electron flow between photosystem II (PSII) and photosystem I (PSI) and the cyclic electron flow around PSI, was isolated from spinach (Spinacia oleracea L.) chloroplasts using n-octyl-β-D-glucopyranoside (β-OG). The preparation was also able to catalyze the peroxidase-like reaction in the presence of hydrogen peroxide (H2O2) and guaiacol. The optimal conditions for peroxidase activity of the preparation included: pH 3.6, ionic strength 0.1, and temperature 35°C. The apparent Michaelis constant (Km) values for H2O2 and guaiacol were 50 mM and 2 mM, respectively. The bimolecular rate constant (k obs) was about 26 M-1 s-1 and the turnover number (K cat) was about 60 min-1 (20 mM guaiacol, 100 mM sodium phosphate, pH 3.6, 25°C, [H2O2]<100mM). These parameters were similar to those of several other heme-containing proteins, such as myoglobin and Cyt c. and X. B. Chen ... [et al.].
The photosynthetic pathway of the roots (both the white velamentous main portions and the green, nonvelamentous tips) was investigated in twelve taxa (natural species and intergeneric hybrid cultivars) of epiphytic orchids having CAM leaves. All organs contained chlorophyll, and the a/b ratios indicate that the organs, especially the roots, are likely shade-adapted. Stable carbon isotope ratios of the tissues were near -15‰ for all organs, a value typical of obligate (constitutive) CAM plants. Values for root tissues were slightly lower (more negative) than those of the leaves. The presence of CAM in the leaves of these orchids did not ensure that their roots performed CAM photosynthesis. Further work is needed to address the questions raised in this study and to determine if the photosynthetic roots of these taxa are capable of assimilating atmospheric CO2. and C. E. Martin ... [et al.].
We studied the photosynthetic performance of sterile and fertile sporophytes in a natural population of the fern Dryopteris affinis growing within a riparian forest (Central Italy) using chlorophyll (Chl) a fluorescence transients, the OJIP phase, where O is for the minimum fluorescence, P is for the peak (the maximum), and J and I are inflections. The “vitality” of the samples was assessed by the maximum quantum yield of primary photochemistry obtained indirectly from the fluorescence data (Fv/Fm); in the same way, the so-called performance index (PIABS) was obtained from fluorescence data. The photosynthetic performance (inferred from PIABS) of D. affinis changed significantly with the seasonal development of the fronds. The highest photosynthetic performance was recorded in the summer, corresponding to the period of spore release. The photosynthetic performance decreased in the winter, down to the minimal values of senescent fronds reached at the end of the seasonal cycle (May-June). On the whole, during the seasonal development, sterile and fertile fronds had a similar photosynthetic behaviour, as inferred from fluorescence data. At the end of spore maturation and dispersal (September-October), the fertile fronds showed somewhat lower photosynthetic performance than the sterile fronds, as revealed by PIABS. Being a long-lived fern, confined to humid and undisturbed sites in the Mediterranean, D. affinis deserves to be further investigated as a potential indicator of ecological continuity in Mediterranean riparian forests., L. Paoli, M. Landi., and Obsahuje bibliografii
To assess the short- and long-term impacts of UV radiation (UVR, 280-400 nm) on the microalga Scrippsiella trochoidea, we exposed cells to three different radiation treatments (PAB: 280-700 nm, PA: 320-700 nm, and P: 400-700 nm). A significant decrease in the photochemical efficiency (ΦPSII) at high irradiance (100% of incident solar radiation, 216.0 W m-2) was observed. Photoinhibition was reduced from 62.7 to 10.9% when the cells were placed in 12% solar radiation (26.1 W m-2). In long-term experiments (11 days) using batch cultures, cell densities during the first 5 days were decreased under treaments P, PA, and PAB, reflecting a change in the irradiance experienced in the laboratory to that of incident solar irradiance. Thereafter, specific growth rates increased and UV-induced photoinhibition decreased, indicating acclimation to solar UV. Cells were found to exhibit both higher ratios of repair to UV-related damage, shorter period for recovery and increased concentrations of UV-absorbing compounds (UVabc), whose maximum absorption was found to be at 336 nm. Our data indicate that S. trochoidea is sensitive to ultraviolet radiation, but was able to acclimate relatively rapidly (ca. 6 days) by synthesizing UVabc and by increasing the rates of repair processes of D1 protein in PSII. and W. C. Guan, S. H. Lu.
RNA gel hybridization showed that the expression of monodehydroascorbate reductase (MDHAR) in the wild type (WT) tomato was decreased firstly and then increased under salt- and polyethylene glycol (PEG)-induced osmotic stress, and the maximum level was observed after treatment for 12 h. WT, sense transgenic and antisense transgenic tomato plants were used to analyze the antioxidative ability to cope with osmotic stresses. After salt stress, the fresh mass (FM) and height of sense transgenic lines were greater than those of antisense lines and WT plants. Under salt and PEG treatments, sense transgenic plants showed a lower level of hydrogen peroxide (H2O2) and malondialdehyde (MDA), a higher net photosynthetic rate (PN), and the maximal photochemical efficiency of PSII (Fv/Fm) compared with WT and antisense transgenic plants. Moreover, sense lines maintained higher ascorbate peroxidase (APX) activity than WT and antisense plants under salt- and PEG-induced osmotic stress. These results indicate that chloroplastic MDHAR plays an important role in alleviating photoinhibition of PSII by elevating ascorbate (AsA) level under salt- and PEG-induced osmotic stress., F. Li ... [et al.]., and Obsahuje bibliografii
Článek stručně shrnuje základní adaptace xerotermních rostlin. K těm patří i povrchové struktury vzniklé z epidermis. Blíže je v textu pojednáno o krycích chlupech (trichomech), jejich funkci a morfologii. Článek doplňuji fotografie různých typů těchto trichomů., This article briefly summarises essential adaptations of xerothermic species. These include epidermal structures covering plant surface. The plant hairs (trichomes), their function and morphology are described in detail. The text is supplemented with photos of some trichome types., and Hana Mašková.