We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.
A double ínductíon mechanism of Dl protein degradatíon in isolated photosystem 2 (PS2) core complexes and reaction centres is described, showing the existence of two potentíal sites for primáty cleavage. Donor side inhibition conditi- o n s (presence of electron acceptors but no electron donors and pH 8.0) trigger the hydrolysis of the Dl protein between the putatíve helices 1 and II on the lumenal side of the thylakoid membrane. This results in the generation of a C-terminal 24 kDa fragment. However, when the donor-side is actíve (presence of electron donors but no electron acceptors and pH 6.0, acceptor side inhibition conditions) both preparations are able to produce a N-terminal 23 kDa fragment, indicating cleavage between helices IV and V, on the stromal side of the membrane.
We prove an extension theorem for modular functions on arbitrary lattices and an extension theorem for measures on orthomodular lattices. The first is used to obtain a representation of modular vector-valued functions defined on complemented lattices by measures on Boolean algebras. With the aid of this representation theorem we transfer control measure theorems, Vitali-Hahn-Saks and Nikodým theorems and the Liapunoff theorem about the range of measures to the setting of modular functions on complemented lattices.
Two distinct hemocyte populations are determined in the hemolymph of the triatomine bug Triatoma infestans Klug, oenocytoids and plasmatocytes, and their independent origin from separate stem cells is shown. Both hemocyte populations differ considerably in their morphology, ultrastructure and lectin-binding properties. While oenocytoids are quite uniform with easily definable cells which do not to bind any assayed lectin, the plasmatocytes are a very polymorphic population possessing several morphological types and displaying a positive reactivity with lectins.
Let SP be the set of upper strongly porous at 0 subsets of \mathbb{R}^{+} and let Î(SP) be the intersection of maximal ideals I\subseteq SP. Some characteristic properties of sets E \in Î(SP) are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at 0 subsets of \mathbb{R}^{+} is a proper subideal of Î(SP). Earlier, completely strongly porous sets and some of their properties were studied in the paper V.Bilet, O.Dovgoshey (2013/2014)., Viktoriia Bilet, Oleksiy Dovgoshey, Jürgen Prestin., and Obsahuje seznam literatury
Let $q$ be a positive integer, $\chi $ denote any Dirichlet character $\mod q$. For any integer $m$ with $(m, q)=1$, we define a sum $C(\chi, k, m; q)$ analogous to high-dimensional Kloosterman sums as follows: $$ C(\chi, k, m; q)=\sum _{a_1=1}^{q}{}' \sum _{a_2=1}^{q}{}' \cdots \sum _{a_k=1}^{q}{}' \chi (a_1+a_2+\cdots +a_k+m\overline {a_1a_2\cdots a_k}), $$ where $a\cdot \overline {a}\equiv 1\bmod q$. The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value $|C(\chi, k, m; q)|$, and give two interesting identities for it.
Two original electrical methods of dikes monitoring (temperature scalar field and electrical impedance spectrometry) are described in detail. Using these methods, the non-stationary movement of the free water level in the dike can be indicated. The methods also enable to detect the piping in the dike due to the activity of animals. Some results are shown and discussed. and V příspěvku jsou uvedeny dvě neinvazivní metody (metoda měření teplotního skalárního pole a elektrické impedanční spektrometrie), které byly laboratorně ověřeny při monitorování nestacionárního pohybu volné hladiny vody v ochranných hrázích. Tyto metody navržené a ověřené autory příspěvku rovněž umožňují detekovat objemové změny (velikost nádrže při přelití koruny hráze, působení drobných živočichů apod.) konstrukce ochranné hráze. Některé ze získaných výsledků jsou zde uvedeny a diskutovány.
Archaeometallographic data suggest that there were two technological models in Eastern Europe as early as the Bronze Age–Early Iron Age transition period (9th–7th centuries BC). We link their development to two routes via which knowledge of use of ferrous metals diffused from Anatolia. The first route reached the North Caucasus, the second route passed through Greece and the Balkans to Central and Eastern Europe. and Archeometalografická data naznačují, že již v přechodu mezi dobou bronzovou a ranou dobou železnou (9.–7. stol. př. n. l.) existovaly ve východní Evropě dva technologické modely zpracování železa. Jejich rozvoj spojujeme se dvěma trasami, kterými se znalosti užívání železných kovů z Anatolie rozšířily. První trasa překročila Zakavkazsko, druhá trasa vedla přes Řecko a Balkán do střední a východní Evropy.