1 - 2 of 2
Number of results to display per page
Search Results
2. Two identities related to Dirichlet character of polynomials
- Creator:
- Yao, Weili and Zhang, Wenpeng
- Format:
- bez média and svazek
- Type:
- model:article and TEXT
- Subject:
- Dirichlet character of polynomials, sum analogous to Kloosterman sum, identity, and Gauss sum
- Language:
- English
- Description:
- Let $q$ be a positive integer, $\chi $ denote any Dirichlet character $\mod q$. For any integer $m$ with $(m, q)=1$, we define a sum $C(\chi, k, m; q)$ analogous to high-dimensional Kloosterman sums as follows: $$ C(\chi, k, m; q)=\sum _{a_1=1}^{q}{}' \sum _{a_2=1}^{q}{}' \cdots \sum _{a_k=1}^{q}{}' \chi (a_1+a_2+\cdots +a_k+m\overline {a_1a_2\cdots a_k}), $$ where $a\cdot \overline {a}\equiv 1\bmod q$. The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value $|C(\chi, k, m; q)|$, and give two interesting identities for it.
- Rights:
- http://creativecommons.org/publicdomain/mark/1.0/ and policy:public